Ali Nouri Qarahasanlou; Abbas Barabadi; Meisam Saleki
Abstract
Implementing maintenance protocols for industrial machinery is essential since a well-thought-out plan may support and improve machinery dependability, production quality, and safety precautions. Implementing a maintenance plan that considers the equipment's actual functional behavior and the effects ...
Read More
Implementing maintenance protocols for industrial machinery is essential since a well-thought-out plan may support and improve machinery dependability, production quality, and safety precautions. Implementing a maintenance plan that considers the equipment's actual functional behavior and the effects of failures will be easier and more practical. Engineers must consider environmental conditions when studying in hostile environments such as mine. The major goal of this study is to create a mining equipment maintenance program that is as effective as possible while incorporating risk and performance indicators and taking environmental factors into account. The study uses the “reliability-centered maintenance” method, which combines the reliability operating index and risk. The Cox model also includes the risk factors associated with environmental conditions in the reliability analysis. The proposed approach was implemented in a 5-758 Komatsu dump-truck case study at the Sungun copper mine in Iran. The reliability-centered maintenance approach is implemented for dump-truck in three scenarios based on risk factors: 1- baseline, 2- First semi-annual, cheap maintenance, and 3- second semi-annual, expensive maintenance. All failure modes are low-risk, making corrective maintenance appropriate. In Scenario 1, electrical-electrical, electrical-start, mechanical, and pneumatic-related failures are low-risk, making corrective maintenance suitable. In Scenario 2, corrective maintenance is recommended for pneumatic-related failure. In Scenario 3, the fuel-related failure has a high criticality number and failure intensity, indicating a high-risk situation. Time-based preventive maintenance is the most appropriate strategy for this scenario.
A. Nouri Qarahasanlou; M. Ataei; R. Shakoor Shahabi
Abstract
Whether directly in the form of expenses or indirectly, the objective of maintenance in the mining industry is self-evident in time losses and loss of production. In this paper, the reliability-based maintenance is examined with a different insight than before. The system goes back to the Good As New ...
Read More
Whether directly in the form of expenses or indirectly, the objective of maintenance in the mining industry is self-evident in time losses and loss of production. In this paper, the reliability-based maintenance is examined with a different insight than before. The system goes back to the Good As New (GAN) state or too Bad As Old (BAO) maintenance state; why so, the maintenance of the system shifts to the midrange state. On the other hand, the implementation of repairs is strongly influenced by the environmental factors that are known as the “risk factors”. Therefore, an analysis requires a model that integrates two basic elements: (1) incompleteness of the maintenance effect and (2) risk factors. Thus, an extensive proportional hazard ratio model (EPHM) is used as a combination of the Proportional Hazard Model (PHM) and the Hybrid Imperfect Preventive Maintenance model (HIPM) in order to analyze these elements. In this regards, four different preventive maintenance strategies are proposed. All four strategies are time-based including constant interval or periodic (the first and second strategies) and cyclic interval (the third and fourth strategies). The proposed method is applied for a Komatsu HD785-5 dump-truck in the Songun copper mine as a case study. The PM intervals with a mean value of risk factors for the four activities to reach the 80% reliability for the first and second strategies are about 5 and 48 hours. These intervals for the third strategy are calculated as 48.36, 11.58, 10.25, and 9.035, and for the fourth strategy are 5.06, 4.078, 3.459, and 1.92.
Z. Rezaei; M. Ataee-pour; H. Madani
Abstract
Providing a fresh and cool airflow in underground mines is one of the main concerns during mining. Destruction of support systems, the presence of undesirable objects in the airway and distortion of airflow are the parameters involved that would result in pressure loss, which would affect the ventilation ...
Read More
Providing a fresh and cool airflow in underground mines is one of the main concerns during mining. Destruction of support systems, the presence of undesirable objects in the airway and distortion of airflow are the parameters involved that would result in pressure loss, which would affect the ventilation network. There are a lot of research works about the ventilation network planning that consider the confidence in the planning but how reliable are these designs? These questions can be answered using the quantitative reliability evaluation. For the reliability evaluation of mine ventilation network, tunnel resistance and flow rate changes for all branches are considered as the reliability indices and criteria. This paper describes a stepwise method for evaluation of the underground coal mine network reliability associated with major losses using the cut set method. The reliability of the entire network is achieved by the reliability of every single component. The proposed model is implemented by the Takht coal mine. The Takht mine ventilation network probability of failure is in the range of 19-100% so reliability is in the range of 0-81% for the entire ventilation network.
Exploitation
R. Razzaghzadeh; R. Shakoor Shahabi; A. Nouri Qarahasanlou
Abstract
The appropriate operating of mining machines is affected by both the executive and environmental factors. Considering the effects and the related risks lead to a better understanding of the failures of such machines. This leads to a proper prediction of the reliability parameters of such machines. In ...
Read More
The appropriate operating of mining machines is affected by both the executive and environmental factors. Considering the effects and the related risks lead to a better understanding of the failures of such machines. This leads to a proper prediction of the reliability parameters of such machines. In this research work, the reliability and maintainability analysis of the loading and haulage machines in the Sungun Copper Mine, considering the repair condition as multiple repairable units, was performed. For this purpose, the data necessary for the loading and haulage equipment including 2 loaders and 8 dump trucks for a 15-month period was collected and categorized in 10 operational units after the system and sub-systems of the department were determined. Initially, the time between failures (TBFs) and time to repair (TTR) for each unit was calculated. Then 20 sub-systems were developed. Primarily, the Stata software was utilized to carry out the heterogeneity test for all the sub-systems. In consequence, most of the sub-systems were regarded as the heterogeneous ones, except for 7 of them including the dump truck units 1, 2, 3, 4, 5, 7, and 8 in TBFs. Hence, "PHM" that is a covariate-based model displayed the heterogeneous group. Its reliability function was also estimated. For the next step, the trend tests were done on the non-heterogeneous sub-systems by means of the Minitab software. The homogeneous sub-systems with failure trend were modeled by “NHPP”. Afterwards, the non-trended sub-systems formed the data group. Later, the correlation tests were modeled by “HPP”. Finally, the reliability and maintainability functions were calculated with the 95% confidence level.
Environment
S. Abbaszade; F. Mohammad Torab; A. Alikhani; H. Molayemat
Abstract
In geochemical exploration, there are various techniques such as univariate and multivariate statistical methods available for recognition of anomalous areas. Univariate techniques are usually utilized to estimate the threshold value, which is the smallest quantity among the values representing the anomalous ...
Read More
In geochemical exploration, there are various techniques such as univariate and multivariate statistical methods available for recognition of anomalous areas. Univariate techniques are usually utilized to estimate the threshold value, which is the smallest quantity among the values representing the anomalous areas. In this work, a combination of the Sequential Gaussian Simulation (SGS) and Gap Statistics (GS) methods was utilized as a new technique to estimate the threshold and to visualize the anomalous regions in the Hararan area, which is located in SE Iran, and consists of copper mineralization that seems to be connected to a porphyry Cu-Mo system. Furthermore, the most important advantage of this method is the reliable assessment of the anomalous areas. In other words, the anomalous areas were discriminated in terms of their probability values. The regions with high probability values were reliable and appropriate to locate the drilling points for a detailed exploration. It not only decreases the risk, cost, and time of exploration but also increases the drilling point reliability and precision of reserve estimation after drilling. In this research work, the results of analysis of 607 lithogeochemical samples for the element Cu were used. The SGS method was performed on the transformed data and 50 realizations were obtained. In the next step, the back-transformed realizations were utilized to obtain an E-type map, which was the average of 50 realizations. Moreover, the results of the GS method showed that the Cu threshold value was 228 ppm in the area. Therefore, using the E-type map, areas with values greater than 228 ppm were introduced as the anomalous areas. Finally, the probability map of the exceeding threshold values was acquired, and the anomalous districts located in the southern part of the studied area were considered as more reliable regions for future detailed exploration and drilling.
Exploitation
J. Balaraju; M. Govinda Raj; C.H.S.N. Murthy
Abstract
Reliability estimation plays a significant role in the performance assessment of mining equipment, and aids in designing efficient and effective preventive maintenance strategies. Continuous and random/irregular occurrence of failures in a system could be the main cause for performance drop of machinery. ...
Read More
Reliability estimation plays a significant role in the performance assessment of mining equipment, and aids in designing efficient and effective preventive maintenance strategies. Continuous and random/irregular occurrence of failures in a system could be the main cause for performance drop of machinery. The accomplishment of a projected level of production is possible only by an efficient operation of the equipment. In order to improve the equipment life, a critical analysis of failure/breakdown occurrences is required to be carried out, and appropriate remedial measures need to be designed and implemented to enhance reliability. This paper presents a reliability analysis of Load-Haul-Dumper (LHD) in an underground coal mine. The goodness-of-fit distribution of each LHD was made through the Cramer-Von-Mises statistic test. The parameters involved were estimated using both the maximum likelihood analytical estimation process and the graphical process. Further, an attempt was made to reduce the total cost of operation by estimating the reliability-based preventive maintenance time intervals.
Amid Morshedlou; Hesam Dehghani; Seyed Hadi Hoseinie
Abstract
Utilizing the gathered failure data and failure interval data from Tabas coal mine in two years, this paper discusses the reliability of powered supports. The data sets were investigated using statistical procedures and in two levels: the existence of trend and serial correlation. The results show that ...
Read More
Utilizing the gathered failure data and failure interval data from Tabas coal mine in two years, this paper discusses the reliability of powered supports. The data sets were investigated using statistical procedures and in two levels: the existence of trend and serial correlation. The results show that the powered supports follow the Gamma reliability function. The reliability of the machine decreases to almost zero after 520 operation hours and after 80 hours the probability of failure of powered supports increases to 60 percent. The failure rate of powered support shows an improving behavior and therefore a decreasing failure rate. In the beginning of the process, the failure rate is 0.021 failures per hour. This reaches the rate of 0.012 after a sudden decrease, thence forward on a gently decreasing rate and after 100 hours gets to the rate of 0.01. Regarding the maintenance policy and to protect the machine’s operation continuity, preventive maintenance strategy can be chosen. The reliability of the discussed machine can be maintained on a descent level by inspecting and controlling the parts in short term intervals. With regard to reliability plots of powered supports operation, preventive reliability-based maintenance time intervals for 80% reliability levels for powered supports is 15 hours.