Exploration
Seyyed Saeed Ghannadpour; Samaneh Esmaelzadeh Kalkhoran; Maedeh Behifar; Hadi Jalili
Abstract
In this study, with the aim of identifying alteration zones related to the porphyry copper system, satellite images are processed in study area (the Zafarghand exploration area) in the NE of Isfahan. For this purpose, one of the common methods of separating geochemical anomalies from the background, ...
Read More
In this study, with the aim of identifying alteration zones related to the porphyry copper system, satellite images are processed in study area (the Zafarghand exploration area) in the NE of Isfahan. For this purpose, one of the common methods of separating geochemical anomalies from the background, i.e. fractal Concentration-Number (C-N) model, has been employed. The C-N fractal model will normally be implemented on geochemical samples. While in this study, the digital number values belonging to the pixels of the ASTER sensor image are considered as a systematic sample network and also as input for this model. The output of this processing has been prepared in the form of maps of promising areas of the Zafarghand region. The correspondence of the resulting maps with the alteration map of the region shows that applying the proposed method in determining the propylitic and phyllic alteration zones has had acceptable performance. Finally, with the help of the aforementioned proposed method, a map of the promising areas of the study area has been prepared, and based on that, new zones of alterations have been introduced in the region.
Exploration
Khadijeh Validabadi Bozcheloei; Majid Hashemi Tangestani
Abstract
Evaporites are sediments that chemically precipitate due to the evaporation of an aqueous solution. Most evaporite formations, in addition to evaporite minerals, include detrital rocks such as mudstone, marl, and siltstone. Principal Component Analysis (PCA), Directed Principal Component Analysis (DPCA), ...
Read More
Evaporites are sediments that chemically precipitate due to the evaporation of an aqueous solution. Most evaporite formations, in addition to evaporite minerals, include detrital rocks such as mudstone, marl, and siltstone. Principal Component Analysis (PCA), Directed Principal Component Analysis (DPCA), and Band Ratio methods were applied to Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) data for mapping the Gachsaran evaporite formation and distinguishing its lithological units in the Masjed Soleiman oil field, located in southwestern Iran. This oil field was the first recognized oil field in the Middle East. Colour composites of PCs 4, 5, and 2, as RGB images, effectively discriminated this formation from other sedimentary formations. The gypsum spectrum, resampled to the 9 band centres of ASTER, exhibited reflectance in bands 4 and 8 and absorption in bands 6 and 9. As a result, these bands were selected for DPCA application. PC4 effectively highlighted gypsum outcrops as bright pixels, while the band ratio 2/1 accentuated ferric iron, appearing as bright pixels, which correlated with the red marls. The results of this study demonstrate that ASTER image processing is a cost- and time-effective method that can be utilized for mapping evaporite formations and distinguishing their lithological units.
Exploration
Jabar Habashi; Majid Mohammady Oskouei; Hadi Jamshid Moghadam
Abstract
The studied area located in eastern Iran shows a high potential for various mineralizations, especially copper due to its tectonic activity. Remote sensing data can effectively distinguish these areas because of the sparse vegetation. Therefore, in this study, the ASTER (Advanced Spaceborne Thermal Emission ...
Read More
The studied area located in eastern Iran shows a high potential for various mineralizations, especially copper due to its tectonic activity. Remote sensing data can effectively distinguish these areas because of the sparse vegetation. Therefore, in this study, the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) multi-spectral data was used to recognize argillic, sericite, propylitic, and iron oxide alterations associated with copper mineralization. For this purpose, two categories (porphyry copper-iron and advanced argillic-iron) related alterations were considered to perform the classification of a 2617 square kilometer area using a neural network classification algorithm. To evaluate the accuracy of the classifier, the confusion matrix was computed, which provides overall accuracy and the kappa coefficient factors for assessing classification accuracy. As a result, 64.17% and 83.5% of overall accuracy, and 0.602 and 0.807 of the kappa coefficient were achieved for the advanced argillic alterations and porphyry copper categories, respectively. Ultimately, the validation of the classifications was carried out using the normalized score (NS) equation, employing quantitative criteria. Notably, the advanced argillic class emerged with the top normalized score of 2.25 out of 4, signifying a 56% alignment with the geological characteristics of the region. Consequently, this outcome has led to the identification of favorable areas in the central and northeastern parts of the studied area.
Exploration
Seyyed Saeed Ghannadpour; Morteza Hasiri; Hadi Jalili; Somayeh Talebiesfandarani
Abstract
The Zafarghand area (as a porphyry Cu deposit) is located in the northeast of Isfahan and southeast of Ardestan, which is a part of the Iran-Central structural zone, and more precisely, it is located in the Urmia-Dokhtar volcanic belt. In the porphyry Cu deposits exploration, identifying and determining ...
Read More
The Zafarghand area (as a porphyry Cu deposit) is located in the northeast of Isfahan and southeast of Ardestan, which is a part of the Iran-Central structural zone, and more precisely, it is located in the Urmia-Dokhtar volcanic belt. In the porphyry Cu deposits exploration, identifying and determining the alteration zones is of special importance. The aim of the present study is to identify and highlight the alteration zones of Zafarghand area, with the help of the U-statistic method in the processing of ASTER sensor satellite images. Accordingly, considering the raster nature and digital form of satellite images, the digital number values of each pixel from the image matrices were considered as samples in a systematic network. Finally, the U spatial statistic algorithm was implemented as a moving window algorithm for determining anomaly samples in the set of digital number (DN) values of ASTER satellite image pixels. The results of this technique show that the application of the U-statistic method, considering its structural nature and neighboring samples in decision-making, has been successful and has proven to be very effective in determining the alteration zones in the Zafarghand area.
Exploration
A. Habibnia; Gh. R. Rahimipour; H. Ranjbar
Abstract
Hanza region is located in the southern part of Urumieh–Dokhtar Metallogenic belt in southeastern Iran. This region includes six known porphyry copper deposits and it is considered as an ore- bearing region from geochemical point of view. The aim of this research is to examine effective processing ...
Read More
Hanza region is located in the southern part of Urumieh–Dokhtar Metallogenic belt in southeastern Iran. This region includes six known porphyry copper deposits and it is considered as an ore- bearing region from geochemical point of view. The aim of this research is to examine effective processing techniques in the analysis of stream sediment geochemical datasets and ASTER satellite images. The processing methods have led to identification of eight new prospective areas. These methods are aimed at providing univariate geochemical maps. The stream sediment geochemical mapping for Cu and Mo was performed by the sample catchment basin approach. The results derived from this approach have been mapped in four classes associated with the first quartile, third quartile and threshold values obtained from Median Absolute Deviation method. False-colour composite and band ratio techniques were adopted as two well-known methods for the processing of an ASTER scene spanning the study area. Eight new targets for possible mineralization have been resulted from geochemical data analyses. Image processing techniques on the ASTER multispectral data have also revealed widespread hydrothermal alterations associated with the known porphyry copper deposits and the new prospects.
Exploration
M. Honarmand; H. Ranjbar; H. Shahriari; F. Naseri
Abstract
This research was performed with the objective of evaluating the accuracy of spectral angle mapper (SAM) classification using different reference spectra. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital images were applied in the SAM classification in order to map the ...
Read More
This research was performed with the objective of evaluating the accuracy of spectral angle mapper (SAM) classification using different reference spectra. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital images were applied in the SAM classification in order to map the distribution of hydrothermally altered rocks in the Kerman Cenozoic magmatic arc (KCMA), Iran. The study area comprises main porphyry copper deposits such as Meiduk and Chahfiroozeh. Collecting reference spectra was considered after pre-processing of ASTER VNIR/SWIR images. Three types of reference spectra including image, USGS library, and field samples spectra were used in the SAM algorithm. Ground truthing and laboratory studies including thin section studies, XRD analysis, and VNIR-SWIR reflectance spectroscopy were utilized to verify the results. The accuracy of SAM classification was numerically calculated using a confusion matrix. The best accuracy of 74.01% and a kappa coefficient of 0.65 were achieved using the SAM method using field samples spectra as the reference. The SAM results were also validated with the mixture tuned matched filtering (MTMF) method. Field investigations showed that more than 90% of the known copper mineralization occurred within the enhanced alteration areas.