Exploitation
Yehia Z. Darwish; Abdelrahem Khalefa Embaby; Samir Selim; Darwish El Kholy; Hani Sharafeldin; Hussin Farag
Abstract
The younger granites of Gabal Gattar area, Northern Eastern Desert of Egypt, host hydrothermal uranium mineralization at the northern segment of Gattar batholith and along its contacts with the oldest Hammamat sediments. The host rocks display many features of hydrothermal overprint results in changing ...
Read More
The younger granites of Gabal Gattar area, Northern Eastern Desert of Egypt, host hydrothermal uranium mineralization at the northern segment of Gattar batholith and along its contacts with the oldest Hammamat sediments. The host rocks display many features of hydrothermal overprint results in changing their basic engineering characteristics as a function of variations of the degree of alteration. Progression from less altered to altered and mineralized rocks as the result of the alteration processes was assessed by the chemical index of alteration (CIA). The CIA numerical values were calculated by the molecular proportion of Al to the cations Ca, Na, and K. The studied rocks were divided into five grades according to degree of alteration and strength properties including: fresh (AG-I), slightly altered (AG-II), moderately altered (AG-III), highly altered (AG-IV) and very highly altered (AG-V). The strength properties of the studied rock units correlated well with the alteration grades assigned to them. That is, as the grade increased from AG-I to AG-V, abrasion resistance and crushability index increased, whereas compressive strength, slake durability and impact strength decreased.
Exploitation
Marco Antonio Cotrina Teatino; Jairo Jhonatan Marquina Araujo; Eduardo Manuel Noriega Vidal; Jose Nestor Mamani Quispe; Johnny Henrry Ccatamayo Barrios; Joe Alexis Gonzalez Vasquez; Solio Marino Arango Retamozo
Abstract
The primary objective of this research was to apply machine learning techniques to predict the production of an open pit mine in Peru. Four advanced techniques were employed: Random Forest (RF), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), and Bayesian Regression (RB). The methodology ...
Read More
The primary objective of this research was to apply machine learning techniques to predict the production of an open pit mine in Peru. Four advanced techniques were employed: Random Forest (RF), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), and Bayesian Regression (RB). The methodology included the collection of 90 datasets over a three-month period, encompassing variables such as operational delays, operating hours, equipment utilization, the number of dump trucks used, and daily production. The data were allocated 70% for training and 30% for testing. The models were evaluated using metrics such as Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Variance Accounted For (VAF), and the Coefficient of Determination (R2). The results indicated that the Bayesian Regression model was the most effective in predicting production in the open pit mine. The RMSE, MAPE, VAF, and R2 for the models were 3686.60, 3581.82, 4576.61, and 3352.87; 12.65, 11.09, 15.31, and 11.90; 36.82, 40.72, 1.85, and 47.32; 0.37, 0.41, 0.41, and 0.47 for RF, XGBoost, KNN, and RB, respectively. This research highlights the efficacy of machine learning techniques in predicting mine production and recommends adjusting each model's parameters to further enhance outcomes, significantly contributing to strategic and operational management in the mining industry.
Exploitation
Meisam Saleki; Reza Khaloo Kakaie; Mohammad Ataei; Ali Nouri Qarahasanlou
Abstract
One of the most critical designs in open-pit mining is the ultimate pit limit (UPL). The UPL is frequently computed initially through profit-maximizing algorithms like the Lerchs-Grossman (LG). Then, in order to optimize net present value (NPV), production planning is executed for the blocks that ...
Read More
One of the most critical designs in open-pit mining is the ultimate pit limit (UPL). The UPL is frequently computed initially through profit-maximizing algorithms like the Lerchs-Grossman (LG). Then, in order to optimize net present value (NPV), production planning is executed for the blocks that fall within the designated pit limit. This paper presents a mathematical model of the UPL with NPV maximization, enabling simultaneous determination of the UPL and long-term production planning. Model behavior is nonlinear. Thus, in order to achieve model linearization, the model has been partitioned into two linear sub-problems. The procedure facilitates the model solution and the strategy by decreasing the number of decision variables. Naturally, the model is NP-Hard. As a result, in order to address the issue, the Dynamic Pit Tracker (DPT) heuristic algorithm was devised, accepting economic block models as input. A comparison is made between the economic values and positional weights of blocks throughout the steps in order to identify the most appropriate block. The outcomes of the mathematical model, LG, and Latorre-Golosinski (LAGO) algorithms were assessed in relation to the DPT on a two-dimensional block model. Comparative analysis revealed that the UPLs generated by these algorithms are consistent in this instance. Utilizing the new algorithm to determine UPL for a 3D block model revealed that the final pit profit matched LG UPL by 97.95%.
Exploitation
Elham Lotfi; Javad Gholamnejad; Mehdi Najafi; Mohammad Sadegh Zamani
Abstract
In the context of open pit mining operations, long-term production scheduling faces significant challenges due to inherent uncertainties, particularly in commodity prices. Traditional mathematical models often adopt a single-point estimation strategy for commodity price, leading to suboptimal mine plans ...
Read More
In the context of open pit mining operations, long-term production scheduling faces significant challenges due to inherent uncertainties, particularly in commodity prices. Traditional mathematical models often adopt a single-point estimation strategy for commodity price, leading to suboptimal mine plans and missed production targets. The simultaneous effect of commodity price uncertainty on the cut-off grade and long-term production scheduling is less considered. This paper introduces a novel model for optimizing open pit mine long-term production scheduling under commodity price uncertainty considering a dynamic cut-off grade strategy, based on a two-stage Stochastic Production Programming (SPP) framework. The presented model seeks to identify optimal mining block sequences, maximizing total discounted cash flow while penalizing deviations from production targets. To illustrate the model's efficiency, it was implemented in a copper mine. First, the Geometric Brownian Motion (GBM) model is used to quantify the future commodity price. Then, both deterministic and SPP models were solved using GAMS software. The results showed that the practical NPV obtained from the SPP model is approximately 3% higher than the DPP model, while all constraints are satisfied.