Exploration
Marco Antonio Cotrina-Teatino; Jairo Jhonatan Marquina-Araujo; Jose Nestor Mamani-Quispe; Solio Marino Arango-Retamozo; Johnny Henrry Ccatamayo-Barrios; Joe Alexis Gonzalez-Vasquez; Teofilo Donaires-Flores; Maxgabriel Alexis Calla-Huayapa
Abstract
This work aimed to categorize mineral resources in a copper deposit in Peru, using a machine learning model, integrating the K-prototypes clustering algorithm for initial classification and Random Forest (RF) as a spatial smoother. A total of 318,443 blocks were classified using geostatistical and geometric ...
Read More
This work aimed to categorize mineral resources in a copper deposit in Peru, using a machine learning model, integrating the K-prototypes clustering algorithm for initial classification and Random Forest (RF) as a spatial smoother. A total of 318,443 blocks were classified using geostatistical and geometric variables derived from Ordinary Kriging (OK) such as kriging variance, sample distance, number of drillholes, and geological confidence. The model was trained and validated using precision, recall, and F1-score metrics. The results indicated an overall accuracy of 97%, with the measured category achieving 98% precision and an F1-score of 0.98. The total estimated tonnage was 5,859.36 Mt, distributed as follows: 1,446.13 Mt (measured), 2,249.22 Mt (Indicated), and 2,164.01 Mt (Inferred), with average copper grades of 0.43%, 0.33%, and 0.31% Cu, respectively. Compared to the traditional geostatistical methods, this hybrid approach improves classification objectivity, spatial continuity, and reproducibility, minimizing abrupt transitions between categories. The RF model proved to be a robust tool, reducing classification inconsistencies and better capturing geological uncertainty. Future studies should explore hybrid models (K-means with RF, ANN with K-Prototypes, gradient boosting, and deep learning) and incorporate economic variables to optimize decision-making in resource estimation.
Exploration
Babak Sohrabian; Abdullah Erhan Tercan
Abstract
Mineral Resources have commonly been estimated through the kriging method that assigns weights to the samples based on variogram distance to the estimation point without considering their values. More robust estimators such as spatial copulas are promising tools because they consider both distance ...
Read More
Mineral Resources have commonly been estimated through the kriging method that assigns weights to the samples based on variogram distance to the estimation point without considering their values. More robust estimators such as spatial copulas are promising tools because they consider both distance and sample values in determining weights. The purpose of this study is to demonstrate the effectiveness of the Gaussian copulas (GC) by estimating the copper grade values in the Sungun porphyry copper deposit located in Iran. Performance of the method was compared to ordinary kriging (OK) and indicator kriging (IK) by running the Jackknife test of cross-validation. The metrics used in measuring performance of the methods are global accuracy and precision of the distribution of the estimates, error statistics, and variability for globally accurate and precise estimates. The case study shows advantages of GC over OK and IK by producing globally accurate and precise estimates with acceptable error statistics and variability.
Exploration
Jairo Jhonatan Marquina Araujo; Marco Antonio Cotrina Teatino; José Nestor Mamani Quispe; Eduardo Manuel Noriega Vidal; Juan Antonio Vega Gonzalez; Juan Vega-Gonzalez; Juan Cruz-Galvez
Abstract
The objective of this research work to employ machine learning techniques including Multilayer Perceptron Artificial Neural Networks (ANN-MLP), Random Forests (RFs), Extreme Gradient Boosting (XGBoost), and Support Vector Regression (SVR) to predict copper ore grades in a copper deposit located in Peru. ...
Read More
The objective of this research work to employ machine learning techniques including Multilayer Perceptron Artificial Neural Networks (ANN-MLP), Random Forests (RFs), Extreme Gradient Boosting (XGBoost), and Support Vector Regression (SVR) to predict copper ore grades in a copper deposit located in Peru. The models were developed using 5654 composites containing available geological information (rock type), as well as the locations of the samples (east, north, and altitude) and secondary ore grade (Mo) obtained from drilling wells. The data was divided into 10% (565 composites) for testing, 10% (565 composites) for validation, and 80% (4523 composites) for training. The evaluation metrics included SSE (Sum of Squared Errors), RMSE (Root Mean Squared Error), NMSE (Normalized Mean Squared Error), and R² (Coefficient of Determination). The XGBoost model could predict the ore grade with an SSE of 15.67, RMSE = 0.17, NMSE = 0.34, and R² = 0.66, the RFs model with an SSE of 16.40, RMSE = 0.17, NMSE = 0.36, and R² = 0.65, the SVR model with an SSE of 19.94, RMSE = 0.19, NMSE = 0.43, and R² = 0.57, and the ANN-MLP model with an SSE = 21.00, RMSE = 0.19, NMSE = 0.46, and R² = 0.55. In conclusion, the XGBoost model was the most effective in predicting copper ore grades.
Exploration
H. Sabeti; F. Moradpouri
Abstract
The geo-statistical simulation algorithms for continuous spatial variables have been used widely in order to generate the statistically-honored models. There are two main algorithms doing the continuous variable simulation, Sequential Gaussian Simulation (SGS) and Direct Sequential Simulation (DSS). ...
Read More
The geo-statistical simulation algorithms for continuous spatial variables have been used widely in order to generate the statistically-honored models. There are two main algorithms doing the continuous variable simulation, Sequential Gaussian Simulation (SGS) and Direct Sequential Simulation (DSS). The main advantage of the DSS algorithm against the SGS algorithm is that in the DSS algorithm no Gaussian transformation of the original data is made. In this work, these two simulation algorithms are explained, and their applications to a 3D spatial dataset are deeply investigated. The dataset consists of the porosity values of 16 vertical wells extracted from an actual cube obtained by a seismic inversion process. One well data is excluded from the simulation process for the blind well test. Comparison between the histograms show that the histogram reproduction is slightly better for the SGS algorithm, although the population reproductions are the same for both SGS and DSS results. The DSS algorithm reproduce the mean of input data closer to the mean of well data compared to that of the SGS algorithm. Considering one realization from each simulation algorithm, the RMS error corresponding to all simulated cells against the real values is approximately equal for both algorithms. On the other hand, the error show a slightly less value when the mean of 100 realizations of the DSS result is considered.