Rock Mechanics
Taha Ansari; Hamid Chakeri; Mohammad Darbor; sadegh Amoun; Hadi Shakeri
Abstract
There is no acceptable method for investigating the tool wear phenomenon in soft grounds. In this article, first, a new equipment made at Sahand University of Technology is introduced, which is used for simulation of TBM tunneling mechanism. Next, the effect of various soil grading parameters such as ...
Read More
There is no acceptable method for investigating the tool wear phenomenon in soft grounds. In this article, first, a new equipment made at Sahand University of Technology is introduced, which is used for simulation of TBM tunneling mechanism. Next, the effect of various soil grading parameters such as D10, D30, and D60 (which indicate the corresponding diameters on the soil grading diagram where 10, 30, and 60% of the grains are smaller than these values, respectively), coefficient of gradation, uniformity coefficient, sorting coefficient and effective size on the cutting tools wear. The initial studies show that in soils with fine grains greater than 10%, by increase in the values of D10, D30, D60, and effective size, the tool wear increases. However, in soils with fine grains less than 10%, by increase in the above-mentioned parameters, the soil abrasiveness reduces. Also in soils with more than 10% fine grains, by increase in the coefficient of gradation value, the soil abrasiveness reduces. But in soils with fine grains less than 10%, by increase in the value of this parameter, the tool wear increases. The results of experiments show that sorting coefficient could be a good criterion for investigating the soil abrasiveness.
S. Akbari; Sh. Zare; H. Chakeri; H. Mirzaei Nasir Abad
Abstract
Evaluation of the interaction between a new and the existing underground structures is one of the important problems in urban tunneling. In this work, using FLAC3D, four numerical models of single- and twin-tube tunnels in urban areas are developed, where the horizontal distance between the single- and ...
Read More
Evaluation of the interaction between a new and the existing underground structures is one of the important problems in urban tunneling. In this work, using FLAC3D, four numerical models of single- and twin-tube tunnels in urban areas are developed, where the horizontal distance between the single- and twin-tube tunnels are varied. The aim is to analyze the effects of the horizontal distances, considering various criteria such as the deformation of linings, the forces and moments exerted on the twin-tube tunnels and their safety factors, the subsidence that occur on the surface and the nearby buildings, the stability of the single-tube tunnel, and the stability of the pillar lying between the single- and twin-tube tunnels. Considering the above-mentioned criteria, the results obtained indicate that the interaction between the single- and twin-tube tunnels is virtually negligible in the distance more than three times the single-tube tunnel diameter. Also the stability of the pillar lying between the tunnels makes the distance to be chosen at least 1.5 times the single-tube tunnel diameter.