R. Aram; M. Abdollahi; P. Pourghahramani; M. Mohseni; A. Khodadadi Darban
Abstract
In this research work, the solubility of sphalerite concentrate due to mechanical activation in planetary ball mill in both the wet and dry modes is investigated, and the parameters of mean particle size, BET specific surface area, SEM, and XRD are analyzed. The results of the particle size analysis ...
Read More
In this research work, the solubility of sphalerite concentrate due to mechanical activation in planetary ball mill in both the wet and dry modes is investigated, and the parameters of mean particle size, BET specific surface area, SEM, and XRD are analyzed. The results of the particle size analysis and BET specific surface area show that the size of particles for the non-activated sample decrease from 51 to 30 microns but the BET specific surface area increase from 0.17 m2/g to 1.03 m2/g for the residue and feed samples. In the wet and dry mode mechanical activation, the mean particle size and BET specific surface area in the residue samples are reduced relative to the leaching feed. The results of the micro-structure characterization also show that the amorphization of the residue compared to the leaching feed increases in both modes of mechanical activation. The crystallite size and lattice strain of the activated samples in the residue increase and decrease compared to the leaching feed, respectively.
Z. Piervandi; A. Khodadadi Darban; Seyed M. Mousavi; M. Abdollahi; Gh.R. Asadollahfardi; K. Akbari Noghabi
Abstract
Indigenous acidophilic bacteria separated from mine-waste can be used in return for the addition of the reagents like sulfuric acid. Among the tailings bacteria, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans are of the most-studied ones for the bioleaching and bioremediation of elements. ...
Read More
Indigenous acidophilic bacteria separated from mine-waste can be used in return for the addition of the reagents like sulfuric acid. Among the tailings bacteria, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans are of the most-studied ones for the bioleaching and bioremediation of elements. In this work, the isolation and characterization of the mentioned bacteria are studied by a proposed biochemical protocol. The sequential cultivation of the soil bacteria in a series of liquid media and solid cult
M. R. Samadzadeh Yazdi; M. Abdollahi; S. M. Mousavi; A. Khodadadi Darban
Abstract
Although bioleaching of chalcopyrite by thermophilic microorganisms enhances the rate of copper recovery, a high temperature accelerates iron precipitation as jarosite, which can bring many operational problems in the industrial processes. In this research work, the bioleaching of chalcopyrite concentrate ...
Read More
Although bioleaching of chalcopyrite by thermophilic microorganisms enhances the rate of copper recovery, a high temperature accelerates iron precipitation as jarosite, which can bring many operational problems in the industrial processes. In this research work, the bioleaching of chalcopyrite concentrate by the thermophilic Acidianus brierleyi was studied, and the microbial growth, copper dissolution, iron oxidation, and jarosite precipitation were monitored in different initial pH (pHi) values. Bacterial growth was greatly affected by pHi. While the bacterial growth was delayed for 11 days with a pHi value of 0.8, this delay was reduced to nearly one day for a pHi value of 1.2. Two stages of copper recovery were observed during all the tests. A high pHi value caused a fast bacterial growth in the first stage and severe jarosite precipitation in the later days causing a sharp decline in the bacterial population and copper leaching rate. The copper recoveries after 11 days were 25%, 78%, 84%, 70%, 56%, and 39% for the pHi values of 0.8, 1.0, 1.2, 1.3, 1.5, and 1.7, respectively. Sulfur and jarosite were the main residues of the bioleaching tests. It was revealed that the drastic effect of jarosite precipitation on the microbial growth and copper recovery was mainly caused by the ferric iron depletion from solution rather than passivation of the chalcopyrite surface. A slow precipitation of crystalline jarosite did not cause a passive chalcopyrite surface. The mechanisms of chalcopyrite bioleaching were discussed.
M. Mohammadkhani; M. Abdollahy; M. R. Khalesi
Abstract
Copper oxide minerals such as malachite do not respond well to the traditional copper sulfide collectors, and require alternative flotation schemes. In many copper ore mines, significant copper oxide minerals, especially malachite, are associated with sulfide minerals. Considering that xanthates are ...
Read More
Copper oxide minerals such as malachite do not respond well to the traditional copper sulfide collectors, and require alternative flotation schemes. In many copper ore mines, significant copper oxide minerals, especially malachite, are associated with sulfide minerals. Considering that xanthates are most widely used in the flotation of sulfide minerals as well as copper sulfide minerals and, hydroxamate has shown a good selectivity for copper oxide minerals. Use of the synergistic effect of xanthate and hydroxamate can be an effective way to increase the flotation efficiency of copper oxide minerals along with sulfide minerals. In this work, we investigate the individual interactions of potassium amyl xanthate (PAX) and potassium alkyl hydroxamate (HXM) with the natural malachite and explore their synergistic effects on the malachite flotation. The results of solubility of malachite in collector solutions, changes in the malachite surface potential, adsorption kinetics, adsorption densities, dynamic contact angles, FT-IR analyses, and small-scale flotations, are discussed. The results obtained demonstrate that PAX and HXM are chemically co-adsorbed on the malachite surface, and the amount of PAX adsorbed on the malachite surface is considerably increased in the mixed PAX/HXM systems because of the co-adsorption mechanism. The flotation results confirm that the mixed PAX/HXM exhibit a superior flotation performance of malachite compared to the individual system of PAX or HXM. Based on these results, the mixed PAX/HXM exhibit a remarkable synergism effect on malachite surface hydrophobicity.
Mineral Processing
H. Shadi Naghadeh; M. Abdollahy; A. Khodadadi Darban; P. Pourghahramani
Abstract
The Esfordi phosphate concentrate mainly contains fluorapatite, monazite, and xenotime as rare earth element (REE) minerals, accounting for 1.5% of rare earth metals. The monazite and xenotime minerals are refractory and their decomposition is only possible at high temperatures. Thus mechanical activation ...
Read More
The Esfordi phosphate concentrate mainly contains fluorapatite, monazite, and xenotime as rare earth element (REE) minerals, accounting for 1.5% of rare earth metals. The monazite and xenotime minerals are refractory and their decomposition is only possible at high temperatures. Thus mechanical activation was used in the present work for this purpose. After 90 minutes of mechanical activation, the X-ray amorphization phase and the maximum BET surface area were increased to 93.4% and 8.4 m2/g, respectively. The Williamson-Hall plot indicated that the crystallite size was decreased and the lattice strain was increased as a function of the milling intensity. A volume-weighted crystallite size of 64 nm and a lattice strain of 0.9% were achieved from the mechanically activated sample for 90 minutes. The leaching efficiency of REEs with 32% nitric acid at 85 °C was increased from 25% for the initial sample to about 95% for the activated samples. The first stage reaction rate constants for La, Nd, and Ce were increased from 8 × 10-7, 9 × 10-7,and 6 × 10-7 for the initial sample to 1.3 × 10-3, 9 × 10-4, and 7 × 10-4 for the mechanically activated samples at 60 °C, respectively. Also the apparent activation energy for La, Nd, and Ce for the initial sample was found to be about 210, 231, and 229 kJ/mol, which were decreased to 120, 91, and 80 kJ/mol, respectively, after 20 minutes of mechanical activation in an argon atmosphere. The results obtained suggested mechanical activation as an appropriate pre-treatment method for dissolution of REEs from phosphate concentrates containing refractory REE minerals at a lower cost and a higher recovery rate.
Mineral Processing
Y. Kianinia; M. R. Khalesi; M. Abdollahy; A. Khodadadi Darban
Abstract
Processing of gold ores with high sulfide minerals is problematic as they consume cyanide and reduce gold leaching. Optimization of gold leaching and cyanide consumption requires a methodology to estimate the amount of exposed cyanicides, their leaching kinetics, and speciation of cyanide complexes that ...
Read More
Processing of gold ores with high sulfide minerals is problematic as they consume cyanide and reduce gold leaching. Optimization of gold leaching and cyanide consumption requires a methodology to estimate the amount of exposed cyanicides, their leaching kinetics, and speciation of cyanide complexes that consume the free cyanide and compete with gold. In this paper, a physico-chemical approach is presented to estimate the liberation and exposure of cyanicides to the leaching solution, and then prediction of the speciation of all possible related species in the solution. The results obtained show that this methodology not only could successfully estimate the gold leaching and cyanide consumption based on the mineralogical data with a lower number of parameters compared to existing empirical models, but also offers the prediction of formation of all the possible complexes that could be used for optimization purposes.
Mineral Processing
S. Razmjooei; M. Abdollahy; M. R. Khalesi
Abstract
Flotation process in mechanical cells is carried out in highly turbulent conditions. In this work, the impact of impeller speed on four characteristics of the quiescent zone, i.e. zone height, turbulence, solid percentage, and gas holdup, and their relationship with the entrainment is investigated, and ...
Read More
Flotation process in mechanical cells is carried out in highly turbulent conditions. In this work, the impact of impeller speed on four characteristics of the quiescent zone, i.e. zone height, turbulence, solid percentage, and gas holdup, and their relationship with the entrainment is investigated, and it is shown why at a higher impeller speed, entrainment is not significant. The height of the quiescent zone and its turbulence are measured using a piezoelectric sensor, while an electrical conductivity sensor measures the gas hold-up. A peristaltic pump is applied to take samples from the pulp to measure the solid percentage. The results obtained showed that with increase in the impeller speed from 750 to 1100 rpm, the entrainment value changed from 2.01% to 5.69%. However, the variations in entrainment were not significant at speeds higher than 1100 rpm. It was found that the height of the quiescent zone was independent from the impeller speed, while raising the impeller speed, as long as the solid percentage, turbulence, and gas hold-up are increased, caused a drastic increase in entrainment. Despite the increase in the solid percentage and turbulence, the gas hold-up decreased at impeller speeds higher than 1100 rpm due to the variation in the bubble distribution pattern, so the entrainment raised with a smaller slope. Finally, a model is presented for the entrainment as a function of the three correlated variables using the Ridge regression. The entrainment is then correlated to the impeller speed, explaining the contradictory results from the literature on the effect of impeller speed on the entrainment.
M.R. Shahverdi; A. Khodadadi Darban; M. Abdollahy; Yadollah Yamini
Abstract
Flotation is a common process in sulfide ore beneficiation. Due to the restrictions and lack of access to high-quality water sources for industrial purposes, recycled water plays an important role in the flotation processes. Due to the existence of various organic and inorganic substances in the process, ...
Read More
Flotation is a common process in sulfide ore beneficiation. Due to the restrictions and lack of access to high-quality water sources for industrial purposes, recycled water plays an important role in the flotation processes. Due to the existence of various organic and inorganic substances in the process, water influences the flotation performance. In this work, the effect of accumulation of sulfate ion in processed water on galena flotation was investigated. Flotation experiments using processed water without sulfate ion led to a concentrate containing 40.7% of lead and a maximum recovery of 58.9%. The presence of higher sulfate ion levels (2000 M) in processed water caused a significant decrease in the grade and recovery of the lead concentrate. With 2000 mg/L of sulfate ion, the grade and recovery of lead decreased from 40.7 to 24.3% and from 58.9 to 32.1 %, respectively. Thermodynamic calculations showed that when the sulfate ion concentration was increased from 300 to 2000 ppm, it was more likely that lead sulfate (solid) was formed. With increase in the xanthate ion concentration from 10-6 to 10-4 M, could be substituted by . On the basis of the results obtained, it was concluded that in order to reduce the negative effects of sulfate ion accumulation in water and increase the efficiency of the galena flotation process, higher dosages of xanthates should be added to the system.
Mineral Processing
M. Mohseni; M. Abdollahy; R. Poursalehi; M. R. Khalesi
Abstract
The reactivity of the protonated and hydroxylated sphalerite (1 1 0) surface with xanthate was simulated using the density functional theory (DFT). The difference between the energy of the lowest unoccupied molecular orbital of the sphalerite surface and the energy of the highest occupied molecular orbital ...
Read More
The reactivity of the protonated and hydroxylated sphalerite (1 1 0) surface with xanthate was simulated using the density functional theory (DFT). The difference between the energy of the lowest unoccupied molecular orbital of the sphalerite surface and the energy of the highest occupied molecular orbital of xanthate ( was used to compare the reaction capability of xanthate with fresh and functionalized surfaces. The Mulliken atomic charge analysis was used to provide an in-depth insight into the effects of –H+ and –OH- groups on the reactivity of Zn atoms at the sphalerite surface. The values for different systems showed that the protonated surfaces exposed a higher reactivity with xanthate than the fresh and hydroxylated surfaces. The results of the Mulliken atomic charge analysis demonstrated that after the formation of –H+ and –OH- contained groups on the sphalerite surface, the surface atoms found a new charge due to the reduction and oxidation mechanism. In addition, the results obtained revealed that the electrophilicity of Zn atoms after the ion adsorption could be considered as a key factor in the reactivity of the sphalerite surface with xanthate. The DFT-based calculations also showed that different alkyl groups of xanthate had no significant influence on the reactivity of their head groups. The findings of this research work provided insights into the reactions of the sphalerite surface with xanthate.
Mineral Processing
A. Eskanlou; M. R. Khalesi; M. Abdollahy; M. Hemmati Chegeni
Abstract
The success of flotation operation depends upon the thriving interactions of chemical and physical variables. In this work, the effects of particle size, bubble size, and collector dosage on the bubble loading in a continuous flotation column were investigated. In other words, this work was mainly concerned ...
Read More
The success of flotation operation depends upon the thriving interactions of chemical and physical variables. In this work, the effects of particle size, bubble size, and collector dosage on the bubble loading in a continuous flotation column were investigated. In other words, this work was mainly concerned with the evaluation of the true flotation response to the changes in the operating variables in column flotation. Two bubble sizes of 0.8 and 1.8 mm, three size fractions of 63-106, 106-150, and 150-300 μm, and three different dosages of dodecylamine, as the collector, were tested. According to the results obtained, the particle size fraction of 106-150 μm had the maximum bubble loading for bubble diameter of 1.8 mm, while the particle size of 63-106 μm had the maximum bubble loading for bubble diameter of 0.8 mm. It was also shown that increasing the bubble diameter from 0.8 to 1.8 mm increased the bubble loading in all the particle size fractions and collector dosages. However, the mass loading of air bubbles was strongly related to the collector dosage (contact angle), especially for coarse particles. The amount of collector dosage had an upper limit due to the clustering event, which significantly affected the bubble loading. The clustering was found to be more important in the presence of small particles due to a higher number of particles attached to the bubble surface. It was shown that such interactions of variables of true flotation could reasonably be monitored by the bubble loading measurement.
Mineral Processing
F. Basirifar; M.R. Khalesi; M. Ramezanizadeh; M. Abdollahy; A. Hajizadeh
Abstract
Partition curves are widely used to determine the spiral separator efficiency. In this work, the partition curves were used in order to investigate the particle transportation to concentrate and tailing streams. Simulation of fine particle removal using the size-by-size partition curves showed that the ...
Read More
Partition curves are widely used to determine the spiral separator efficiency. In this work, the partition curves were used in order to investigate the particle transportation to concentrate and tailing streams. Simulation of fine particle removal using the size-by-size partition curves showed that the recovery of gangue particles to concentrate can decrease 8.7%. It also showed that the recovery of valuable particles would increase by 6.5% and reaches 90%. Therefore, pilot-scale tests were conducted to verify the simulations. After removal of fine particles from the feed of spiral separator and treating the removed materials with high-intensity magnetic separator, total mass recovery, iron recovery, and iron grade increased from 71%, 85%, and 54% to 80%, 91%, and 56%, respectively.
M. R. Tavakoli Mohammadi; Seyed M. J. Koleini; M. Abdollahy
Abstract
Efforts to increase the mass transfer coefficient, enhance the contact area, and decrease the power input of contractors have given risen to the development of the pre-dispersed solvent extraction (PDSE) contactor and the devise of the new dissolved nitrogen PDSE (DNPDSE) contactors. The studies conducted ...
Read More
Efforts to increase the mass transfer coefficient, enhance the contact area, and decrease the power input of contractors have given risen to the development of the pre-dispersed solvent extraction (PDSE) contactor and the devise of the new dissolved nitrogen PDSE (DNPDSE) contactors. The studies conducted after the design of the new contactor to determine the working conditions for its suitable performance (2.5-3.5 bar pressure, 0.1 L/min sparger flow rate, and 1.5 L of the aqueous phase) showed that for all the evaluated conditions (i.e. the pressure, polyaphron type, and dilution percentage), the recovery in the DNPDSE contactor was higher than that in the PDSE one. In addition, pictures of the performance modes of the two contactor indicated the presence of the organic phase in the form of colloidal gas aphrons (CGAs) in the DNPDSE contactor and of polyaphron aggregations in the PDSE one. This is a good reason for the increased copper recovery in the DNPDSE contactor. The best recovery for the extraction process in the DNPDSE contactor was achieved using the anionic polyaphron of sodium dodecylbenzene sulphonate (NaDBS) with five-fold dilution at 3.5 bar.
Hojat Naderi; Mahmoud Abdollahy; Navid Mostoufi
Abstract
Kinetics of the chemical leaching of chalcocite from a low-grade copper ore in a ferric sulfate medium was investigated using the constrained least square optimization technique. The experiments were carried out for different particle sizes in both the reactor and column at constant Eh, pH, and temperature. ...
Read More
Kinetics of the chemical leaching of chalcocite from a low-grade copper ore in a ferric sulfate medium was investigated using the constrained least square optimization technique. The experiments were carried out for different particle sizes in both the reactor and column at constant Eh, pH, and temperature. The leaching rate increased with increase in the temperature. About 50% of the Cu recovery was obtained after 2 hours of reactor leaching at 75 o C using the -0.5 mm size fraction. Also about 50% of the Cu recovery was obtained after 60 days of column leaching for the +4-8 mm size fraction. For the fine-particle leaching, the first leaching step was fast, and the rate controlling step was diffusion through the liquid film. The results obtained show that as the leaching proceeds, the chemical reaction control appears. Finally, accumulation of the elemental sulfur layer in the solid product together with the jarosite precipitate causes change in the controlling mechanism to solid diffusion. For the coarse-particle leaching, diffusion through the solid product appeared from the initial days of leaching.
Saeed Alishahi; Ahmad Darban; Mahmood Abdollahi
Abstract
Since a high toxicity of cyanide which use as a reagent in the gold processing plant, thiosulfate has been recognized as a environmental friendly reagent for leaching of gold from ore. After gold leaching process it's important for recovery of gold from solution using adsorption or extraction methods, ...
Read More
Since a high toxicity of cyanide which use as a reagent in the gold processing plant, thiosulfate has been recognized as a environmental friendly reagent for leaching of gold from ore. After gold leaching process it's important for recovery of gold from solution using adsorption or extraction methods, One of these methods is activated carbon.The loading of gold from industrial thiosulfate solution that obtained from Zarshuran gold plant-Takab-Iran, onto activated carbon have been investigated. The affecting variables of the adsorption of gold on the carbon included, temperature, concentration of gold, size of activated carbon, pH and the ratio of amount of activated carbon to the volume of solution. The results have shown that at low concentration of gold, effective loading can be achieved at pH 10.5. The size of activated carbon has a significant effect on the loading of gold. In this research the recovery of gold on activated carbon has been predicted using artificial neural network. For this purpose temperature, pH, the proportion of solution volume to weight of activated carbon, gold concentration and time of adsorption were taken as input parameters, whereas, the recovery of gold on activated carbon from thiosulfate solution was considered as an output parameter. The network with LMBP algorithm with two hidden layer were used and the topology 5-4-13-1 showed the best ability for prediction.Moreover sensitive analyze were indicated parameters pH and temperature have substantial influence on adsorption.
sima razmjouee; mahmood abdollahy; seyed mohammad javad koleini
Abstract
Using microflotation method, this study explored the collectorless flotation of Chalcocite and its dependence on the redox potential of pulp . Electrochemical studies were performed by cyclic voltammetry in specific potential ranges and at different pH values. The results show that significant ...
Read More
Using microflotation method, this study explored the collectorless flotation of Chalcocite and its dependence on the redox potential of pulp . Electrochemical studies were performed by cyclic voltammetry in specific potential ranges and at different pH values. The results show that significant floatability of Chalcocite occurs in the specific reducing conditions. By increasing potentials, on the other hand, the floatability of Chalcocite is reduced. The effect of pH was also examined: At pH=4, the maximum recovery of 73%, was obtained at E= -222 mV (Eh= -17); and at pH=9, the maximum recovery of 71% was obtained at E= -501 mV (Eh= -296). On the basis of the results obtained, the possible mechanisms of collectorless flotation of Chalcocite in different conditions were discussed.