Exploitation
S. Moosazadeh; H. Aghababaie; Seyed H. Hoseinie; B. Ghodrati
Abstract
Utilization is one of the main managerial factors that is applied for construction process analysis well. It directly affects the project duration and construction costs. Therefore, a utilization study in tunneling projects is essential. In this work, the utilization of an earth pressure balance Tunnel ...
Read More
Utilization is one of the main managerial factors that is applied for construction process analysis well. It directly affects the project duration and construction costs. Therefore, a utilization study in tunneling projects is essential. In this work, the utilization of an earth pressure balance Tunnel Boring Machine (TBM) in Tabriz urban railway project was studied using the Monte Carlo simulation approach. For this purpose, the unit operation during one working shift such as boring time, ring building time, and locomotive travel time was recorded and saved in data base. In addition, the general down times such as TBM and back-up system maintenance, surface and tunnel logistic maintenance, cutting tools’ replacement, and locomotive delay times were recorded and considered in simulation. The results of this work show that the mean simulated project duration time of case study TBM is approximately 859 shifts and close to the real data with a difference of 0.92%. Finally, the average estimated utilization factor was found to be approximately 14%.
Exploitation
M. Jamshidi; M. Osanloo
Abstract
The block economic value (BEV) of a single-metal deposit is calculated based on the metal content and the related costs. The common methods available for calculating BEV are just based upon the profitable elements, and the effects of undesirable elements on BEV are not considered. However, in multi-element ...
Read More
The block economic value (BEV) of a single-metal deposit is calculated based on the metal content and the related costs. The common methods available for calculating BEV are just based upon the profitable elements, and the effects of undesirable elements on BEV are not considered. However, in multi-element deposits, the effects of other elements existing in the blocks on BEV should be considered with the purpose of optimizing the blending. These elements and blending methods have considerable effects on the quality of the final product. In this paper, a new approach is introduced to determine BEV in multi-element deposit with two types of profitable and penalty elements by considering the effect of blending on BEV. Consequently, the ultimate pit limits (UPLs) will be determined based on these conditions. The developed model is tested in the Gol-e-Gohar No.2 iron-ore mine, and the mine UPLs is determined. The results obtained showed that the mineable reserve of the pit increased by 3% when the effects of both types of elements are considered. In order to investigate the effect of grade uncertainty on BEV, twenty realizations of the ore block are generated using the sequential Gaussian simulation approach. The UPLs of all the realizations are determined using the developed BEV-calculation method, and the pit limits with different probabilities of occurrence are determined. The total mineable reserve varied between 20,380 and 46,410 million tons. The exploitation of mine should start with the smallest pit (100% probability). The largest pit should be considered as a guide for surface-facility locating.
Exploitation
S. Talesh Hosseini; O. Asghari; Seyed R. Ghavami Riabi
Abstract
Due to the existence of a constant sum of constraints, the geochemical data is presented as the compositional data that has a closed number system. A closed number system is a dataset that includes several variables. The summation value of variables is constant, being equal to one. By calculating the ...
Read More
Due to the existence of a constant sum of constraints, the geochemical data is presented as the compositional data that has a closed number system. A closed number system is a dataset that includes several variables. The summation value of variables is constant, being equal to one. By calculating the correlation coefficient of a closed number system and comparing it with an open number system, one can see an increase in the values of the closed number system, which is false. Such features of this data prevent the application of standard statistical techniques to process the data. Therefore, several methods have been proposed for transforming the data from closed to open number systems. There are various geostatistical methods consisting of estimation and simulation methods in order to model a deposit. Geostatistical simulations can produce various models for a deposit with different probability percentages. The most applicable geostatistical simulation method is the sequential Gaussian simulation technique, which is highly flexible. In this work, 392 Litho-geochemical data of the Baghqloom region of Kerman in Iran consisting of 20 elements were at first converted using an open number system. Afterwards, the elements that were helpful for exploring the area and were normally standard were simulated for 100 times. After the simulations, the valid output was chosen using geostatistical validation. The maps derived from the simulations revealed the enriched concentrations of mineralization elements in the central regions.
Exploitation
R. Ghasemi; B. Tokhmechi; G. Borg
Abstract
The known ore deposits and mineralization trends are important key exploration criteria in mineral exploration within a specific region. Fry analysis has conventionally been considered as a suitable method to determine the mineralization trends related to linear structures. Based upon literature sources, ...
Read More
The known ore deposits and mineralization trends are important key exploration criteria in mineral exploration within a specific region. Fry analysis has conventionally been considered as a suitable method to determine the mineralization trends related to linear structures. Based upon literature sources, to date, no investigation has been carried out that includes the Sensitivity Analysis of Feature's Number (SAFN), Sensitivity Analysis of Window Size (SAWS), and Sensitivity Analysis of Spatial Distribution (SASD) of Fry analysis related to mineral locations. In this work, SAFN, SAWS, and SASD are performed by moving several different sub-windows among the main window in order to identify the main trends of mineralization by Fry analysis in the Bavanat region of Iran, which is qualified by its regional and local faults pattern. Based upon our investigation, the effectiveness of the window size and the number of features on Fry analysis are 15-30%. The determined main trends of sub-windows increase, whereas its distribution function of Fry outputs is more similar to the distribution function of Fry outputs of the main window. Moreover, the directions of rose diagrams could be changed due to the edge effects of marginal features around the selected window. However, by selecting an appropriate window, this problem can be solved. Additionally, by an appropriate window selection, the most suitable regional situation is an area that contains the largest number of deposits with a similar metallogenetic origin. Based upon our investigation, the distribution function of the Fry outputs is the main factor that directly controls the identified mineralization pattern of the selected windows.
Exploitation
B. Sohrabian; R. Mikaeil; R. Hasanpour; Y. Ozcelik
Abstract
The quality properties of andesite (Unit Volume Weight, Uniaxial Compression Strength, Los500, etc.) are required to determine the exploitable blocks and their sequence of extraction. However, the number of samples that can be taken and analyzed is restricted, and thus the quality properties should be ...
Read More
The quality properties of andesite (Unit Volume Weight, Uniaxial Compression Strength, Los500, etc.) are required to determine the exploitable blocks and their sequence of extraction. However, the number of samples that can be taken and analyzed is restricted, and thus the quality properties should be estimated at unknown locations. Cokriging has been traditionally used in the estimation of spatially cross-correlated variables. However, it can face unsolvable matrices in its algorithm. An alternative to cokriging is to transform variables into spatially orthogonal factors, and then to apply kriging to them. Independent Component Analysis (ICA) is one of the methods that can be used to generate these factors. However, ICA is applicable to zero lag distance so that using methods with distance parameter in their algorithms would be advantageous. In this work, Minimum Spatial Cross-correlation (MSC) was applied to six mechanical properties of Cubuk andesite quarry located in Ankara, Turkey, in order to transform them into approximately orthogonal factors at several lag distances. The factors were estimated at 1544 (5 m × 5 m) regular grid points using the kriging method, and the results were back-transformed into the original data space. The efficiency of the MSC-kriging was compared with Independent Component kriging (IC-kriging) and cokriging through cross-validation test. All methods were unbiased but the MSC-kriging outperformed the IC-kriging and cokriging because of having the lowest mean errors and the highest correlation coefficients between the estimated and the observed values. The estimation results were used to determine the most profitable blocks and the optimum direction of extraction.
Exploitation
S. Safari Sinegani; M. Ziaii; M. Ghoorchi; M. Sadeghi
Abstract
In this work, the concentration gradient (CG) analysis of local-scale exploration for Porphyry-Cu deposits is applied in two zones using the G(Vz) index (CG(Zn*Pb)/CG(Cu*Mo)). The first zone is covered by a 1:2000 map of the Sungun and Astamal areas in NW Iran and the second one in the Inza area in British ...
Read More
In this work, the concentration gradient (CG) analysis of local-scale exploration for Porphyry-Cu deposits is applied in two zones using the G(Vz) index (CG(Zn*Pb)/CG(Cu*Mo)). The first zone is covered by a 1:2000 map of the Sungun and Astamal areas in NW Iran and the second one in the Inza area in British Columbia, Canada. The rock samples are taken from Sungun and Astamal and the soil samples are taken from Inza. The Inza samples are analyzed for Cu, Pb, Zn, and Mo elements by the atomic absorption method, while the rock samples of Astamal and Sungun are analyzed for Cu, Pb, Zn, Mo, Ag, As, and Sb elements. The indices of gradient geochemical zonality (G(Vz)) of multi-elements around the mineral deposits and their spatial associations with particular geological, geochemical, and structural factors are the critical aspects that must be considered in mineral exploration. The values for the G(Vz) indices allow a distinction between the sub-ore and supra-ore anomalies, which are associated with Zone Dispersed Mineralization (ZDM) and Blind Mineralization (BM), respectively. For a comparative identification of BM and ZDM, a supra-ore (Pb*Zn) anomaly, a sub-ore (Cu*Mo) anomaly, and Vz maps are used in place of the mining geochemistry representing the supra-ore gradient anomaly, sub-ore gradient anomaly and G(Vz) map. The G(Vz) model outperforms the Vz model. The introduced technique allows for a computational distinction between the BM and ZDM ore mineralizations without exploration drilling. Prior to writing this paper, the blind porphyry-Cu mineralization was intersected at depth through borehole exploration in a highly prospective zone delineated by the G(Vz) model. The results obtained confirm the usefulness of the G(Vz) modeling for local-scale targeting of blind mineral deposits.
Exploitation
F. Aliyari; P. Afzal; J. Abdollahi Sharif
Abstract
The Zarshuran Carlin-like gold deposit is located at the Takab Metallogenic belt in the northern part of the Sanandaj-Sirjan zone, NW Iran. The high-grade ore bodies are mainly hosted by black shale and cream to gray massive limestone along the NNE-trending extensional fault/fracture zones. The aim of ...
Read More
The Zarshuran Carlin-like gold deposit is located at the Takab Metallogenic belt in the northern part of the Sanandaj-Sirjan zone, NW Iran. The high-grade ore bodies are mainly hosted by black shale and cream to gray massive limestone along the NNE-trending extensional fault/fracture zones. The aim of this investigation was to determine and separate the gold mineralized stages based on the surface litho-geochemical Au, Hg, and As data using the Concentration-Area (C-A) fractal model and stepwise factor analysis in the Zarshuran gold deposit. Three mineralized stages were determined by the C-A fractal modeling and factor analysis, which were correlated with the mineralized stages from geological studies. The main stage of Au mineralization was higher than 1.995 ppm, which was correlated with the main sulfidation stage, whereas the As and Hg highly intense anomalies (higher than 6409 and 19 ppm, respectively) were associated with the quartz-sulfide veins and veinlets. The results obtained by the C-A fractal model and stepwise factor analysis showed that the main gold mineralized stage occurred in the southern part of the Zarshuran deposit, which was correlated with the geological particulars.
Exploitation
S. Saadat
Abstract
Motivated by the recent successful results of using GIS modeling in a variety of problems related to the geosciences, some knowledge-based methods were applied to a regional scale mapping of the mineral potential, special for Cu-Au mineralization in the Feyz-Abad area located in the NE of Iran. Mineral ...
Read More
Motivated by the recent successful results of using GIS modeling in a variety of problems related to the geosciences, some knowledge-based methods were applied to a regional scale mapping of the mineral potential, special for Cu-Au mineralization in the Feyz-Abad area located in the NE of Iran. Mineral Prospectivity Mapping (MPM) is a multi-step process that ranks a promising target area for more exploration. In this work, five integration methods were compared consisting of fuzzy, continuous fuzzy, index overlay, AHP, and fuzzy AHP. For this purpose, geological maps, geochemical samples, and geophysics data were collected, and a spatial database was constructed. ETM + images were used to extract the hydroxyl and iron-oxide alterations, and to identify the linear and fault structures and prospective zones in regional scale; ASTER images were used to extract SiO2 index, kaolinite, chlorite, and propylitic alterations in a district scale. All the geological, geochemical, and geophysical data was integrated for MPM by different analysis. The values were determined by expert knowledge or logistic functions. Based upon this analysis, three main exploration targets were recognized in the Feyz-Abad district. Based on field observation, MPM was proved to be valid. The prediction result is accurate, and can provide directions for future prospecting. Among all the methods evaluated in this work, which tend to generate relatively similar results, the continuous fuzzy model seems to be the best fit in the studied area because it is bias-free and can be used to generate reliable target areas.
Exploitation
E. Ghasemi
Abstract
In underground excavation, where the road-headers are employed, a precise prediction of the road-header performance has a vital role in the economy of the project. In this paper, a new model is developed for prediction of the road-header performance using the non-linear multivariate regression analysis. ...
Read More
In underground excavation, where the road-headers are employed, a precise prediction of the road-header performance has a vital role in the economy of the project. In this paper, a new model is developed for prediction of the road-header performance using the non-linear multivariate regression analysis. This model is able to estimate the instantaneous cutting rate (ICR) of roadheader based on rock properties such as Brazilian tensile strength (BTS), rock mass cuttability index (RMCI), and alpha angle (α: is the angle between the tunnel axis and the planes of weakness). In order to construct and test the proposed model, a database including 62 cutting cases is used in the Tabas coal mine No. 1 in Iran. Various statistical performance indices were employed to evaluate the model efficiency. The results obtained indicate that the proposed non-linear regression model can be efficiently used to predict the road-header cutting performance. Furthermore, the prediction capacity of this model is better than the empirical models developed previously. Finally, it should be noted that the developed model is site-specific, and it can be used for preliminary estimation of ICR in future phases of Tabas coal mine No. 1. The outcome of this model can be helpful in adjustment of time-scheduling of the project.
Exploitation
A. Aryafar; H. Moeini
Abstract
Anomaly separation using stream sediment geochemical data has an essential role in regional exploration. Many different techniques have been proposed to distinguish anomalous from study area. In this research, a continuous restricted Boltzmann machine (CRBM), which is a generative stochastic artificial ...
Read More
Anomaly separation using stream sediment geochemical data has an essential role in regional exploration. Many different techniques have been proposed to distinguish anomalous from study area. In this research, a continuous restricted Boltzmann machine (CRBM), which is a generative stochastic artificial neural network, was used to recognize the mineral potential area in Korit 1:100000 sheet, located 15 km south of Tabas, South Khorasan Province (East of Iran). For this purpose, 470 geochemical stream sediment samples were collected from the study area and analyzed for 36 elements. In order to achieve the goal, in the first step, the robust factor analysis on compositional data was applied to reduce the data dimension and to limit the multivariate analysis by selecting the main components of mineralization. In this procedure, the third factor (out of 6) consisting of Cu, Pb, Zn, Sn, and Sb, related to the metallogenic properties, was considered as the input set in CRBM. In continuation, the CRBM structure with the best efficiency after trying different parameters was stabilized. High-identified error values or anomalies were exteracted using two different thresholds (ASC and ASE) after training with the whole data and reconstructing it by CRBM. The anomalies were then mapped. These indicated the promissing areas. The field studies and existing mining indices confirmly demonestrated the results obtained by CRBM.
Exploitation
M. Mohtasham; H. Mirzaei Nasirabad; A. Mahmoodi Markid
Abstract
Truck and shovel operations comprise approximately 60% of the total operating costs in open pit mines. In order to increase productivity and reduce the cost of mining operations, it is essential to manage the equipment used with high efficiency. In this work, the chance-constrained goal programing (CCGP) ...
Read More
Truck and shovel operations comprise approximately 60% of the total operating costs in open pit mines. In order to increase productivity and reduce the cost of mining operations, it is essential to manage the equipment used with high efficiency. In this work, the chance-constrained goal programing (CCGP) model presented by Michalakopoulos and Panagiotou is developed to determine an optimal truck allocation plan in open pit mines and reduce the waiting times of trucks and shovels. The developed goal programming (GP) model is established considering four desired goals: “maximizing shovel production”, “minimizing deviations in head grade”, “minimizing deviations in tonnage feed to the processing plants from the desired feed” and “minimizing truck operating costs”. To employ the developed model, a software is prepared in Visual Studio with C# programming language. In this computer program, the CPLEX optimizer software is incorporated for solving the developed goal programing model. The case study of Sungun copper mine is also considered to evaluate the presented GP model and prepared software. The results obtained indicate that the developed model increases the mine production above 20.6% with respect to the traditional truck allocation plan, while meeting the desired grade and the stripping ratio constraints.
Exploitation
S. Abbaszadeh; Seyed R. Mehrnia; S. Senemari
Abstract
The Ramand region is a part of the magmatic belt in Urmieh-Dokhtar structural zone in Iran, located in the SW of BuinـZahra. This area mainly consists of felsic extrusions such as rhyolites and rhyodacites. Argillic alterations with occurrences of mineralized silica veins are abundant in most of the ...
Read More
The Ramand region is a part of the magmatic belt in Urmieh-Dokhtar structural zone in Iran, located in the SW of BuinـZahra. This area mainly consists of felsic extrusions such as rhyolites and rhyodacites. Argillic alterations with occurrences of mineralized silica veins are abundant in most of the volcanic units. In this research work, we used the GIS facilities for modeling the Ramand geo-spatial databases according to the Fuzzy logic algorithms. The main phase of mineralization occurred in the altered regions and is located near the cross cut fault systems. Therefore, the main criteria for integration were the geological, structural, geophysical, and remotely sensed (Landsat7, ETM+) layers. Also we used a contoured aeromagnetic map for revealing and weighting lineaments. By the Fuzzy techniques applied, all the evidential themes were integrated to prognosis of ore mineralization potentials based on γ = 0.75. As a result, the hydrothermal alterations and their relevant post-magmatic mineralization were introduced in the south and eastern parts of the Ramand region by the fuzzification procedures. Our highlighted recommendation for more exploration activities is focused on the geophysical land surveys (electric and magnetic fields), and the geochemical sampling from mineralized regions in the depth and outcrops of alterations.
Exploitation
H. Shahi
Abstract
Discrimination of the blind and dispersed mineralization deposits is a challenging problem in geochemical exploration. The frequency domain (FD) of the surface geochemical data can solve this important issue. This new exploratory information can be achieved using the interpretation of FD of geochemical ...
Read More
Discrimination of the blind and dispersed mineralization deposits is a challenging problem in geochemical exploration. The frequency domain (FD) of the surface geochemical data can solve this important issue. This new exploratory information can be achieved using the interpretation of FD of geochemical data, which is impossible in spatial domain. In this research work, FD of the surface geochemical data is analyzed to decompose the complex geochemical patterns related to the mineral deposits. In order to identify the dispersed mineralization zone in the Chichakloo Pb–Zn deposit, a newly developed approach is proposed based on the coupling of two-dimensional Fourier transform (2DFT) and principal component analysis (PCA). The surface geochemical data is transferred to FD using 2DFT, and two low-pass filters are designed and performed on FD. Then the PCA method is employed on these frequency bands (FBs) separately. This proposed scenario desirably illustrates the relationship between the low frequencies in the surface geochemical distribution map (GDM) and the deep deposits. The informations obtained from the detailed exploration and the exploration drillings such as boreholes confirm the results obtained from this method. This new combined approach is a valuable data-processing tool and pattern-recognition technique in geochemical explorations. This approach is quite inexpensive compared to the traditional exploration methods.
Exploitation
E. Bakhtavar; A. Jafarpour; S. Yousefi
Abstract
In order to catch up with reality, all the macro-decisions related to long-term mining production planning must be made simultaneously and under uncertain conditions of determinant parameters. By taking advantage of the chance-constrained programming, this paper presents a stochastic model to create ...
Read More
In order to catch up with reality, all the macro-decisions related to long-term mining production planning must be made simultaneously and under uncertain conditions of determinant parameters. By taking advantage of the chance-constrained programming, this paper presents a stochastic model to create an optimal strategy for producing bimetallic deposit open-pit mines under certain and uncertain conditions. The uncertainties of grade, price per product, and capacities of the various stages in the process of production of the final product were considered. The results of solving the deterministic and stochastic models showed that the stochastic model had a greater compatibility and performance than the other ones.
Exploitation
A. Hosseini; M. Najafi; Seyed A. Shojaatlhosseini; R. Rafiee
Abstract
The longwall mining method is one of the most applied methods in extracting low-inclined to high-inclined coal seams. Selection of the most suitable extraction equipment is very important in the economical, safety, and productivity aspects of mining operations. There are a lot of parameters affecting ...
Read More
The longwall mining method is one of the most applied methods in extracting low-inclined to high-inclined coal seams. Selection of the most suitable extraction equipment is very important in the economical, safety, and productivity aspects of mining operations. There are a lot of parameters affecting the selection of an extraction equipment in mechanized longwall mining in steeply inclined coal seams. The important criteria involved are the geometric properties of coal seam (dip, thickness, and uniformity of coal seam), geological and hydraulic conditions (faults, fractures, joints, and underground water), and geomechanical properties of coal seam and surrounding rocks. Extraction of inclined coal seams with gradients greater than 40 degree is different from low-inclined seams, and requires a special equipment. Therefore, the influence of the above-mentioned parameters must be considered simultaneously in the selection of extraction equipment for steeply inclined seams. This paper presents an application of the Fuzzy Analytical Hierarchy Process (FAHP) method in order to select a suitable extraction equipment in the Hamkar coal mine. In the proposed FAHP model, fifteen main criteria are considered, as follow: dip of coal seam, thickness of coal seam, seam uniformity, expansion of coal seam, faults, fractures and joints, underground waters, hangingwall strength, footwall strength, coal strength, in-situ stress, equipment salvage, dilution, system flexibility, and operational costs. Among the 6 considered longwall extraction equipment system alternatives, the findings show that the most suitable extraction equipment system is shearer on footwall and a support system using hydraulic props and the transport of coal with the force of gravity.