Exploitation
Sruti Narwal; Debasis Deb; Sreenivasa Rao Islavath; Gopinath Samanta
Abstract
A novel underground mining method is proposed to extract friable chromite ore bodies in weak and weathered limonitic host rock below an open-pit mine. The conventional underground methods do not instil confidence since GSI (Geological Strength Index) of ore bodies and host rock lies below 35. Series ...
Read More
A novel underground mining method is proposed to extract friable chromite ore bodies in weak and weathered limonitic host rock below an open-pit mine. The conventional underground methods do not instil confidence since GSI (Geological Strength Index) of ore bodies and host rock lies below 35. Series of dimensions of transverse stopes along the strike are suggested based on a detailed analysis of multiple mining and backfilling operations by simulating 36 three-dimensional numerical models. For each operation or sequence, a strength-based “Mining Sequence Factor (MSF)” is devised that helps quantifying its equivalent strength compared to in-situ conditions. This factor along with the average equivalent plastic strain (AEPS) developed on the pillars as obtained from numerical models is used to determine the safe operations with desired yearly production target. The paper provides an in-depth analysis of this method and suggests minimum pillar dimensions of 40 m, whether in-situ or backfilled. The paper, in addition, lays the design of underground drives and their support system as per NGI (Norwegian Geotechnical Institute) guidelines and 3D numerical studies, the performance of which is analysed considering distribution of stress and equivalent plastic strain.
Exploitation
Moslem Jahantigh; Hamidreza Ramazi
Abstract
Various methods have been used for clustering big data. Pattern recognition methods are suitable methods for clustering these data. Due to the large volume of samples taken in the drilling of mines and their analysis for various elements, this category of geochemical data can be considered big data. ...
Read More
Various methods have been used for clustering big data. Pattern recognition methods are suitable methods for clustering these data. Due to the large volume of samples taken in the drilling of mines and their analysis for various elements, this category of geochemical data can be considered big data. Examining and evaluating drilling data in the Lar copper mine in Sistan and Baluchistan province located in the southeast of Iran requires the use of these methods. Therefore, the main goal of the article is the clustering of the drilling data in the mentioned mine and its zoning of the geochemical data. To achieve this goal, 3500 samples taken from drilling cores have been used. Elemental analysis for six elements has been done using the ICP-Ms method. Pattern recognition methods including SOM and K-MEANS have been used to evaluate the relation between these elements. The silhouette method has been used to determine and evaluate the number of clusters. Using this method, 4 clusters have been considered for the mentioned data. According to this method, it was found that the accuracy of clustering is higher in the SOM method. By considering the 4 clusters, 4 zones were identified using clustering methods. By comparing the results of the two methods and using the graphical method, it was determined that the SOM method has a better performance for clustering geochemical data in the studied area. Based on that, zones 2 and 4 were recognized as high-grade zones in this area.
Exploitation
Avula Rajashekar Yadav; Sreenivasa Rao Islavath; Srikanth Katkuri
Abstract
The installation gallery/set-up room of a longwall panel is driven for installation of the longwall face machineries to start the extraction of coal from the longwall panel. The width of the installation gallery is 8 to 9 m. This gallery needs to be stabilized till the face machineries to be deployed ...
Read More
The installation gallery/set-up room of a longwall panel is driven for installation of the longwall face machineries to start the extraction of coal from the longwall panel. The width of the installation gallery is 8 to 9 m. This gallery needs to be stabilized till the face machineries to be deployed from the driving of the room as it required to stand more than 8 to 10 months and develop the high stress concentration, roof-to-floor convergence and yield zone in the roof and sides. Hence, in this study, a deep longwall mine of India is considered to analyze the behavior of set-up room. For this, a total of twelve 3D numerical models are developed and analyzed considering Mohr’s-Coulomb failure criterion. Three panels located at 417, 462, 528 m having three different widths (8, 10 and 12 m) of set-up rooms are examined. The width of the set-up room is taken based on the length of the shield support. The results in terms of vertical stress distribution, vertical displacement, roof-to-floor convergence, plastic strain and yield zone distribution are presented.
Exploitation
Mohammad Sina Abdollahi; Mehdi Najafi; Alireza Yarahamdi Bafghi; Ramin Rafiee
Abstract
The stability analysis of chain pillars is crucial, especially as coal extraction rates increase, making it essential to reduce the size of these pillars. Therefore, a new method for estimating the load on chain pillars holds significant importance. This research introduces a novel solution for estimating ...
Read More
The stability analysis of chain pillars is crucial, especially as coal extraction rates increase, making it essential to reduce the size of these pillars. Therefore, a new method for estimating the load on chain pillars holds significant importance. This research introduces a novel solution for estimating side abutment load and analyzing the stability of chain pillars using the dynamic mode of the Coulmann Graphical (CG) method. The solution is implemented using Visual Studio software and is named Coulmann Chain Pillar Stability Analysis (CCPSA). The CG method is widely recognized in civil engineering as a highly efficient technique for determining soil side abutment pressure in both static and dynamic conditions. This method involves calculating the top-rupture wedge of chain pillars using the CG method. The CCPSA software functions share significant similarities with those of the Analysis Longwall Pillar Stability (ALPS) method. However, the main point of departure between the proposed method and the ALPS empirical method lies in their respective approaches to calculating side abutment load on chain pillars and evaluating subsidence conditions. The effectiveness of this method has been validated using a database of chain pillars from various mines worldwide and has been compared with the ALPS method. The results of the comparison demonstrate that the CCPSA is highly effective in evaluating chain pillar stability. This underscores the potential of the CG method and CCPSA software in providing valuable insights for assessing and ensuring the stability of chain pillars in mining operations.
Exploitation
Behnam Alipenhani; Mehran Jalilian; Abbas Majdi; Hassan Bakhshandeh Amnieh; Mohammad Hossein Khosravi
Abstract
The paper presents the effect of the dip of joints, joint spacing, and the undercutting method on the height of the caving in block caving. The obtained results show that among the three investigated parameters, respectively, the dip of joints, undercutting method, and joint spacing have the greatest ...
Read More
The paper presents the effect of the dip of joints, joint spacing, and the undercutting method on the height of the caving in block caving. The obtained results show that among the three investigated parameters, respectively, the dip of joints, undercutting method, and joint spacing have the greatest effect on increasing the height of the caving zone. Comparing the data obtained from physical and numerical modeling shows a 97% match. Also, by increasing the joint spacing from 4 to 6 cm, 14%, from 6 to 8 cm, about 35%, and from 8 to 10, about 50%, the height of the caving zone has decreased. Regarding the dip of the joint, with the dip increasing from 30 to 45 degrees, about 3% of the caving height decreases. By increasing the dip of the joint from 45 to 60 degrees, the caving height has decreased by 42%. By increasing this value from 60 to 75 degrees, the caving height has increased by 50%. Also, changing the undercutting method from symmetric to advanced undercutting has increased the caving height by 40%. Additionally, three mathematical models have been proposed based on the shape of the caving zone in physical modeling.
Exploitation
Morteza Javadi; Ashkan Shahpasand; Shahrbanou Sayadi; Arash Shahpasand
Abstract
The stratified-sedimentary rock mass, as the typical host ground of coal mine tunnels, is characterized by highly non-isotropic deformation due to the very persistent discontinuity of bedding planes. This study evaluates the effect of tunnel location relative to the host ground strata on the excavation-induced ...
Read More
The stratified-sedimentary rock mass, as the typical host ground of coal mine tunnels, is characterized by highly non-isotropic deformation due to the very persistent discontinuity of bedding planes. This study evaluates the effect of tunnel location relative to the host ground strata on the excavation-induced displacements around a coal mine tunnel driven along the inclined coal seam. To achieve this goal, a calibrated finite element method (FEM) numerical model based on field monitoring displacements was developed for the coal mine tunnel at a depth of 300 m. This calibrated numerical model was then utilized to investigate the effect of the horizontal location of the tunnel on the induced displacement field through sensitivity analysis. Finally, the sensitivity analysis results were compared in terms of displacement components around the tunnel. The results of this study demonstrate a reasonable level of accuracy (for practical demands) of the calibrated numerical model, with an average error of about 8% for maximum displacements at measured points. The numerical models show an asymmetric spatial distribution of displacements around the tunnel due to the anisotropy of the rock mass, especially in the case of inclined layers. The arrangement of weak-strength coal and intercalary stone layers relative to the excavation line of the tunnel plays a key role in this issue. The critical state of displacements (maximum displacement in sensitivity analysis) occurs where the intersection line of the coal-intercalary stone is tangent to the tunnel excavation line. Additionally, the excavation-induced displacement decreases as the distance between the coal-intercalary stone interface and the tunnel increases, with a distance of about 1.5 m suggested for practical applications.
Exploitation
Emad Ansari; Ramin Rafiee; Mohammad Ataei
Abstract
Due to longwall mining, a large space without any support is created, and the in-situ stress regimes change. The change of the in-situ stress regimes affects the roof and face of the adjacent panel. In other words, the strata behavior would be different from the intact condition during the previous panel ...
Read More
Due to longwall mining, a large space without any support is created, and the in-situ stress regimes change. The change of the in-situ stress regimes affects the roof and face of the adjacent panel. In other words, the strata behavior would be different from the intact condition during the previous panel mining. In this study, two adjacent panels are simulated in the FLAC3D software to study the effect of panel extraction on its adjacent panel strata behavior during longwall mining. The available data of the Tabas Parvadeh Coal Mine panels is used for this purpose. According to the numerical modeling results, the length of the first roof’s weighting effect (FRWE) in the gob of the first and second panels is calculated, respectively, as 26 and 21 meters. In other words, the gob dimension in the second panel is reduced by about 19.2%, and the vertical displacement value is increased by about 18.5%. In addition, the chance of roof collapse and face spalling during the first-panel mining is more than the second-panel. It means that roof and face instability in the (FRWE) during the first-panel mining is confirmed, while in the second-panel extraction is just very likely.