Exploitation
Meisam Saleki; Reza Khaloo Kakaie; Mohammad Ataei; Ali Nouri Qarahasanlou
Abstract
One of the most critical designs in open-pit mining is the ultimate pit limit (UPL). The UPL is frequently computed initially through profit-maximizing algorithms like the Lerchs-Grossman (LG). Then, in order to optimize net present value (NPV), production planning is executed for the blocks that ...
Read More
One of the most critical designs in open-pit mining is the ultimate pit limit (UPL). The UPL is frequently computed initially through profit-maximizing algorithms like the Lerchs-Grossman (LG). Then, in order to optimize net present value (NPV), production planning is executed for the blocks that fall within the designated pit limit. This paper presents a mathematical model of the UPL with NPV maximization, enabling simultaneous determination of the UPL and long-term production planning. Model behavior is nonlinear. Thus, in order to achieve model linearization, the model has been partitioned into two linear sub-problems. The procedure facilitates the model solution and the strategy by decreasing the number of decision variables. Naturally, the model is NP-Hard. As a result, in order to address the issue, the Dynamic Pit Tracker (DPT) heuristic algorithm was devised, accepting economic block models as input. A comparison is made between the economic values and positional weights of blocks throughout the steps in order to identify the most appropriate block. The outcomes of the mathematical model, LG, and Latorre-Golosinski (LAGO) algorithms were assessed in relation to the DPT on a two-dimensional block model. Comparative analysis revealed that the UPLs generated by these algorithms are consistent in this instance. Utilizing the new algorithm to determine UPL for a 3D block model revealed that the final pit profit matched LG UPL by 97.95%.
Mine Economic and Management
Mahdi Pouresmaieli; Mohammad Ataei; Ali Nouri Qarahasanlou; Abbas Barabadi
Abstract
The mining industry operates in a complex and dynamic environment and faces many challenges that can negatively affect sustainable development goals. To avoid these effects, mining needs to adopt strategic decisions. Therefore, it requires effective decision-making processes for resource optimization, ...
Read More
The mining industry operates in a complex and dynamic environment and faces many challenges that can negatively affect sustainable development goals. To avoid these effects, mining needs to adopt strategic decisions. Therefore, it requires effective decision-making processes for resource optimization, operational efficiency, and sustainability. Multicriteria decision-making methods (MCDM) have been considered valuable decision-support tools in the mining industry. This article comprehensively examines MCDM methods and their applications in the mining industry. This article discusses the basic principles and concepts of MCDM methods, including the ability to prioritize and weigh conflicting, multiple criteria and support decision-makers in evaluating diverse options. According to the results, 1579 MCDM articles in mining have been published from the beginning to April 15, 2023, and a scientometric analysis was done on these articles. In another part of this article, 19 MCDM methods, among the most important MCDM methods in this field, have been examined. The process of doing work in 17 cases of the reviewed methods is presented visually. Overall, this paper is a valuable resource for researchers, mining industry professionals, policymakers, and decision-makers that can lead to a deeper understanding of the application of MCDM methods in mining. By facilitating informed decision-making processes, MCDM methods can potentially increase operational efficiency, resource optimization, and sustainable development in various mining sectors, ultimately contributing to mining projects' long-term success and sustainability.
Exploitation
Emad Ansari; Ramin Rafiee; Mohammad Ataei
Abstract
Due to longwall mining, a large space without any support is created, and the in-situ stress regimes change. The change of the in-situ stress regimes affects the roof and face of the adjacent panel. In other words, the strata behavior would be different from the intact condition during the previous panel ...
Read More
Due to longwall mining, a large space without any support is created, and the in-situ stress regimes change. The change of the in-situ stress regimes affects the roof and face of the adjacent panel. In other words, the strata behavior would be different from the intact condition during the previous panel mining. In this study, two adjacent panels are simulated in the FLAC3D software to study the effect of panel extraction on its adjacent panel strata behavior during longwall mining. The available data of the Tabas Parvadeh Coal Mine panels is used for this purpose. According to the numerical modeling results, the length of the first roof’s weighting effect (FRWE) in the gob of the first and second panels is calculated, respectively, as 26 and 21 meters. In other words, the gob dimension in the second panel is reduced by about 19.2%, and the vertical displacement value is increased by about 18.5%. In addition, the chance of roof collapse and face spalling during the first-panel mining is more than the second-panel. It means that roof and face instability in the (FRWE) during the first-panel mining is confirmed, while in the second-panel extraction is just very likely.
Rock Mechanics
Sajjad Rezaei; Ramin Rafiee; Mohammad Ataei; Morteza Javadi
Abstract
The stability of waste dumps is a significant and at times critical issue in the development of surface mines. Due to insufficient space for waste disposal, environmental concerns, and various other factors, Mine No. 4 at Golgohar Sirjan is not capable of establishing a new waste dump. Given the existing ...
Read More
The stability of waste dumps is a significant and at times critical issue in the development of surface mines. Due to insufficient space for waste disposal, environmental concerns, and various other factors, Mine No. 4 at Golgohar Sirjan is not capable of establishing a new waste dump. Given the existing limitations of the mine, the investigation has focused on increasing the dump capacity through the implementation of benches. In this research work, the stability of the waste dump has been investigated using the limit equilibrium method with the Slide3D software, along with a Monte Carlo simulation approach for probabilistic analysis. The results obtained from these methods have been compared with each other. The acceptable safety factor considered for this assessment ranges from 1.15 to 1.2. By adding benches to the eastern waste dump of the mine, a displaced volume equivalent to 36,715.565 cubic meters has been added to the capacity. The constructed model is based on the topography of the area, with dimensions of 1850 meters in length, 1750 meters in width, and 160 meters in height. The results indicate that the safety factor of the waste dump has been calculated as follows using the Spencer, Janbu, and Bishop methods respectively: 1.26, 1.199, and 1.226. Mine No. 4 needs to extract 983.58 million tons of waste to produce 73 million tons of iron ore. In total, by discharging 428 million tons of waste in the northeastern and eastern dumps and adding a bench, a volume of 555.571 million tons of waste is available for disposing of the remaining waste. Considering the remaining waste volume, space must be allocated for waste disposal to Mine No. 4.
S. Shaffiee Haghshenas; R. Mikaeil; A. Esmaeilzadeh; N. Careddu; M. Ataei
Abstract
Predicting the amperage consumption of cutting machines could be one of the critical steps in optimizing the energy-consuming points for the dimension stone cutting industry. Hence, the study of the relationship between the operational characteristics of cutting machines and rocks with focusing ...
Read More
Predicting the amperage consumption of cutting machines could be one of the critical steps in optimizing the energy-consuming points for the dimension stone cutting industry. Hence, the study of the relationship between the operational characteristics of cutting machines and rocks with focusing on the machine's energy-consuming is unavoidable. For this purpose, in the first step, laboratory studies under different operating conditions at different cutting depths and feed rates are performed on 12 soft and hard rock samples. In the continuation of the laboratory studies, the rock samples are transferred to the rock mechanics laboratory in order to determine the mechanical properties (uniaxial compressive strength and modulus of elasticity). The statistical studies are performed in the SPSS software in order to predict the electrical current consumption of the cutting machine according to the mechanical characteristics of the rock samples, cutting depth, and feed rate. The statistical models proposed in this work can be used with a high reliability in order to estimate the electrical current consumed in the cutting process.
A. Nouri Qarahasanlou; M. Ataei; R. Shakoor Shahabi
Abstract
Whether directly in the form of expenses or indirectly, the objective of maintenance in the mining industry is self-evident in time losses and loss of production. In this paper, the reliability-based maintenance is examined with a different insight than before. The system goes back to the Good As New ...
Read More
Whether directly in the form of expenses or indirectly, the objective of maintenance in the mining industry is self-evident in time losses and loss of production. In this paper, the reliability-based maintenance is examined with a different insight than before. The system goes back to the Good As New (GAN) state or too Bad As Old (BAO) maintenance state; why so, the maintenance of the system shifts to the midrange state. On the other hand, the implementation of repairs is strongly influenced by the environmental factors that are known as the “risk factors”. Therefore, an analysis requires a model that integrates two basic elements: (1) incompleteness of the maintenance effect and (2) risk factors. Thus, an extensive proportional hazard ratio model (EPHM) is used as a combination of the Proportional Hazard Model (PHM) and the Hybrid Imperfect Preventive Maintenance model (HIPM) in order to analyze these elements. In this regards, four different preventive maintenance strategies are proposed. All four strategies are time-based including constant interval or periodic (the first and second strategies) and cyclic interval (the third and fourth strategies). The proposed method is applied for a Komatsu HD785-5 dump-truck in the Songun copper mine as a case study. The PM intervals with a mean value of risk factors for the four activities to reach the 80% reliability for the first and second strategies are about 5 and 48 hours. These intervals for the third strategy are calculated as 48.36, 11.58, 10.25, and 9.035, and for the fourth strategy are 5.06, 4.078, 3.459, and 1.92.
N. Hajkazemiha; M. Shariat; M. Monavari; M. Ataei
Abstract
Mining and mineral industry have important role in supporting sustainable development of countries. Many countries rely on the income derived from natural resources, but the exploitation of the natural resources may impact the environment and destroy the ecosystem. Mining activities usually affect the ...
Read More
Mining and mineral industry have important role in supporting sustainable development of countries. Many countries rely on the income derived from natural resources, but the exploitation of the natural resources may impact the environment and destroy the ecosystem. Mining activities usually affect the surrounding lands and ecosystems. The natural, social, and economic environments are part of this ecosystem that are directly involved in these activities. In order to reduce environmentally destructive effects of mining on ecosystem, some important measures must be taken to minimize the negative impacts of mining and related industries. In this paper, for the first time in Iran, a study was conducted to define and categorize the reclamation criteria in three largest iron ore mines. During this research, an attempt was made to establish, define and evaluate forty reclamation criteria. Since the number of criteria is high, to adopt the best practice in mine reclamation program, these criteria should be prioritized. The defined criteria ranked by mining experts, mining managers and related university professors according to their experience and knowledge. The raw collected data were evaluated, processed by Delphi-Fuzzy process and finally analyzed using the Multi-Criteria Decision Making (MCDM) method. The prioritized criteria can provide the authorities with a guideline to start reclamation planning based on the mining and environment requirements and budgeting and also to make the most fruitful, effective and low-cost decisions.
S. Mohammadi; M. Babaeian; M. Ataei; K. Ghanbari
Abstract
This work incorporates the DEMATEL-MABAC method for quantifying the potential of roof fall in coal mines by means of the coal mine roof rating (CMRR) parameters. For this purpose, considering the roof weighting interval as a quantitative criterion for the stability of the roof, the immediate roof falling ...
Read More
This work incorporates the DEMATEL-MABAC method for quantifying the potential of roof fall in coal mines by means of the coal mine roof rating (CMRR) parameters. For this purpose, considering the roof weighting interval as a quantitative criterion for the stability of the roof, the immediate roof falling potential was quantified and ranked in 15 stopes of Eastern Alborz Coal Mines Company. In this regard, on the basis of the experts’ judgments, the fuzzy DEMATEL method was used for designation weights of the parameters, and the MABAC method was incorporated to quantify and rank the stopes (alternatives). “UCS of roof” and “joint spacing” in the immediate roof were found to be the most important parameters that controlled roof falling in stopes; and “joint persistence” was also found to be a quite significant parameter. Finding confirms that overall strength of rood rock mass plays a main role in the falling potential. Comparison of the coefficients of determination (R2) between the weighting interval and proposed model with that and original CMRR indicated more than 15% increase, which represented that the new proposed model was more accurate to quantify roof quality. The findings of this work show that using this combined method and specializing the CMRR method for a given mine geo-condition to assess the quality of the roof and its potential of collapse possesses a higher performance when compared with the original CMRR method.
Exploitation
R. Norouzi Masir; M. Ataei; A. Mottahedi
Abstract
The drilling and blasting method is the first choice for rock breakage in surface or underground mines due to its high flexibility against variations and low investment costs. However, any method has its own advantages and disadvantages. The flyrock phenomenon is one of the drilling and blasting disadvantages ...
Read More
The drilling and blasting method is the first choice for rock breakage in surface or underground mines due to its high flexibility against variations and low investment costs. However, any method has its own advantages and disadvantages. The flyrock phenomenon is one of the drilling and blasting disadvantages that the mining engineers have always been faced with in the surface mine blasting operations. Flyrock may lead to fatality and destroy mine equipment and structures, and so its risk assessment is very essential. For a flyrock risk assessment, the causing events that lead to flyrock along with their probabilities and severities should be identified. For this aim, a combination of the fuzzy fault tree analysis and multi-criteria decision-making methods are used. Based on the results obtained, the relevant causing events of flyrock in surface mines can be categorized into three major groups: design error, human error, and natural error. Finally, using the obtained probabilities and severities for these three groups, the risk matrix is constructed. Based on the risk matrix, the risk numbers of flyrock occurrence due to the design errors, human errors, and natural influence are 12, 6, and 2, respectively. Hence, in order to minimize the flyrock risk, it is very vital for the engineers to select appropriate values for the design events of blasting pattern such as burden, spacing, delays, and hole diameter.
Exploitation
M. Mohseni; M. Ataei; R. Khaloo Kakaie
Abstract
The contamination of ores with wastes or materials of lower than the cut-off grade is referred to as dilution. Dilution is an undesirable phenomenon that, on one hand, reduces the product grade and, consequently, reduces the sales prices and, on the other hand, adds an extra cost to waste production. ...
Read More
The contamination of ores with wastes or materials of lower than the cut-off grade is referred to as dilution. Dilution is an undesirable phenomenon that, on one hand, reduces the product grade and, consequently, reduces the sales prices and, on the other hand, adds an extra cost to waste production. Therefore, studying and evaluating the dilution risk is important in mining, and especially in underground mining. In this work, using a powerful decision-making method, i.e. Multi-Attributive Approximation Area Comparison (MABAC), the dilution risk and ranking it in underground mines are assessed. For this purpose, the most important parameters affecting the dilution in 10 mines of the Venarch manganese mines are first identified and then weighed using the Fuzzy Delphi Analytical Hierarchy Analysis (FDAHP) method. Then using the MABAC method, the dilution risk score for each mine is estimated, and subsequently, various mines are ranked as the dilution risk. Then with the implementation of the Cavity Monitoring System (CMS) and measurement of the actual dilution values, the mines are ranked in dilution. The correct matching of the results of these two rankings indicates that the MABAC method is highly effective in the ranking of the risk. At the end, the risk ranking of the mines is done using the TOPSIS method, and the lack of full compliance with the results of this method with the actual values indicates that the MABAC method is preferable to the TOPSIS method.
Exploitation
F. Sotoudeh; M. Ataei; R. Kakaie; Y. Pourrahimian
Abstract
In mining projects, all uncertainties associated with a project must be considered to determine the feasibility study. Grade uncertainty is one of the major components of technical uncertainty that affects the variability of the project. Geostatistical simulation, as a reliable approach, is the most ...
Read More
In mining projects, all uncertainties associated with a project must be considered to determine the feasibility study. Grade uncertainty is one of the major components of technical uncertainty that affects the variability of the project. Geostatistical simulation, as a reliable approach, is the most widely used method to quantify risk analysis to overcome the drawbacks of the estimation methods used for an entire ore body. In this work, all the algorithms developed by numerous researchers for optimization of the underground stope layout are reviewed. After that, a computer program called stope layout optimizer 3D is developed based on a previously proposed heuristic algorithm in order to incorporate the influence of grade variability in the final stope layout. Utilizing the sequential gaussian conditional simulation, 50 simulations and a kriging model are constructed for an underground copper vein deposit situated in the southwest of Iran, and the final stope layout is carried out separately. It can be observed that geostatistical simulation can effectively cope with the weakness of the kriging model. The final results obtained show that the frequency of economic value for all realizations varies between 6.7 M$ and 30.7 M$. This range of variation helps designers to make a better and lower risk decision under different conditions.
Exploitation
A. Saffari; M. Ataei; F. Sereshki
Abstract
Spontaneous combustion of coal is one of the most horrifying hazards in coal industries, especially in underground coal mines. Thus having a prior knowledge about the occurrence of this phenomenon in underground coal mines is of crucial importance in preventing this process, loss of life, huge economic ...
Read More
Spontaneous combustion of coal is one of the most horrifying hazards in coal industries, especially in underground coal mines. Thus having a prior knowledge about the occurrence of this phenomenon in underground coal mines is of crucial importance in preventing this process, loss of life, huge economic loss, and environmental pollution. The aim of this work is to determine the spontaneous combustion of coal potential in the Tabas Parvadeh coal mines in Iran in order to assess the effect of coal intrinsic characteristics on its occurrence. For the purpose of this investigation, the coal samples were collected from Parvadeh I to IV, and the coal intrinsic characteristics of the samples were tested. In order to determine the spontaneous combustion of coal propensity in this case study, the Crossing Point Temperature (CPT) test was used. Then the relation between the coal intrinsic characteristics and the CPT test values was determined. The results obtained showed that the B1 seam in Parvadeh II and C1 seam in Parvadeh III had a high potential of spontaneous combustion of coal potential. These results also show that an increase in the moisture, volatile matter, pyrite, vitrinite, and liptinite contents enhance the spontaneous combustion of coal tendency in these mines. The results obtained have major outcomes for the management of this phenomenon in the Tabas Parvadeh coal mines. Therefore, evaluation of the spontaneous combustion of coal hazards in coal mines should start in the first stage of design and carried on during their whole lifecycle, even after mine closure.
Rock Mechanics
J. Mohammadi; M. Ataei; R. Kakaie; R. Mikaeil; S. Shaffiee Haghshenas
Abstract
Prediction of the production rate of the cutting dimensional stone process is crucial, especially when chain saw machines are used. The cutting dimensional rock process is generally a complex issue with numerous effective factors including variable and unreliable conditions of the rocks and cutting machines. ...
Read More
Prediction of the production rate of the cutting dimensional stone process is crucial, especially when chain saw machines are used. The cutting dimensional rock process is generally a complex issue with numerous effective factors including variable and unreliable conditions of the rocks and cutting machines. The Group Method of Data Handling (GMDH) type of neural network and Radial Basis Function (RBF) neural network, as two kinds of the soft computing method, are powerful tools for identifying and assessing the unpredicted and uncertain conditions. Hence, this work aims to develop prediction models for estimating the production rate of chain saw machines using the RBF neural network and GMDH type of neural network, and then to compare the results obtained from the developed models based on the performance indices including value account for, root mean square error, and coefficient of determination. For this purpose, the parameters of 98 laboratory tests on 7 carbonate rocks are accurately investigated, and the production rate of each test is measured. Some operational characteristics of the machines, i.e. arm angle, chain speed, and machine speed, and also the three important physical and mechanical characteristics including uniaxial compressive strength, Los Angeles abrasion test, and Schmidt hammer (Sch) are considered as the input data, and another operational characteristic of the machines, i.e. production rate, is considered as the output dataset. The results obtained prove that the developed GMDH model is able to provide highly promising results in order to predict the production rate of chain saw machines based on the performance indices.
Rock Mechanics
A.R. Dormishi; M. Ataei; R. Khaloo Kakaie; R. Mikaeil; S. Shaffiee Haghshenas
Abstract
One of the most significant and effective criteria in the process of cutting dimensional rocks using the gang saw is the maximum energy consumption rate of the machine, and its accurate prediction and estimation can help designers and owners of this industry to achieve an optimal and economic process. ...
Read More
One of the most significant and effective criteria in the process of cutting dimensional rocks using the gang saw is the maximum energy consumption rate of the machine, and its accurate prediction and estimation can help designers and owners of this industry to achieve an optimal and economic process. In the present research work, it is attempted to study and provide models for predicting the maximum energy consumption of the gang saw during the process of soft dimensional rocks with the help of an intelligent optimization model such as random non-linear techniques, i.e. the Hybrid ANFIS-DE and Hybrid ANFIS-PSO algorithms based upon 4 physical and mechanical parameters including uniaxial compressive strength, Mohs hardness, Schimazek’s F-abrasiveness factors, Young modulus, and an operational characteristic of the machine, i.e. production rate. During this research work, 120 samples are tested on 12 carbonate rocks. The maximum energy consumption of the cutting machine during this work is measured and used as a modeling output for evaluating the performance of cutting machine. Also meta-heuristic algorithms including DE and PSO algorithms are used for training the Adaptive Neural Fuzzy Inference System (ANFIS). In addition, the PSO algorithm has a higher ability in terms of model output and performance indices and has a superiority over the differential evolution algorithm. Furthermore, comparison between the measured datasets with the ANFIS-DE and ANFIS-PSO models indicate the accuracy and ability of the ANFIS-PSO model in predicting the performance of gang saw considering the machine’s properties and the cut rock.
R. Mikaeil; Y. Ozcelik; M. Ataei; S. Shaffiee Haghshenas
Abstract
Evaluation and prediction of performance of diamond wire saw is one of the most important factors involved in planning the dimension stone quarries. The wear rate of diamond wire saw can be investigated as a major criterion to evaluate its performance. The wear rate of diamond wire saw depends upon non-controlled ...
Read More
Evaluation and prediction of performance of diamond wire saw is one of the most important factors involved in planning the dimension stone quarries. The wear rate of diamond wire saw can be investigated as a major criterion to evaluate its performance. The wear rate of diamond wire saw depends upon non-controlled parameters related to rock characteristics and controlled parameters related to characteristics of the cutting machine and operational parameters. Under the same working conditions, the wear rate of diamond wire saw is strongly affected by the rock properties. This is a key factor that required in evaluating the wear rate of diamond wire saw. In this work, the four major dimension stone properties uniaxial compressive strength, Schimazek F-abrasivity factor, Shore hardness, and Young's modulus were selected as the criteria to evaluate the wear rate of diamond wire saw using the harmony search algorithm (HSA). HSA was used to cluster the fifteen different andesite quarries located in Turkey. The studied dimension stones were classified into three classes. The results obtained show that the algorithm applied can be used to classify the performance of diamond wire saw according to its wear rate by only some famous physical and mechanical properties of dimension stone.
Exploitation
M. Mohseni; M. Ataei; R. Khaloo Kakaie
Abstract
Production planning in mineral exploitation should be undertaken to maximize exploited ore at a minimum unplanned dilution. Unplanned dilution reduction is among the ways to enhance the quality of products, and hence, reduce the associated costs, resulting in a higher profit. In this way, firstly, all ...
Read More
Production planning in mineral exploitation should be undertaken to maximize exploited ore at a minimum unplanned dilution. Unplanned dilution reduction is among the ways to enhance the quality of products, and hence, reduce the associated costs, resulting in a higher profit. In this way, firstly, all the parameters contributing to unplanned dilution in underground stopes and specifically the cut-and-fill stoping method are identified. Secondly, the parameters are weighed using the fuzzy-Delphi analytical hierarchy process. Thirdly, the most effective parameters are selected among the pool of effective parameters. Finally, in order to present a novel classification system for an unplanned dilution assessment, a new index called stope unplanned dilution index (SUDI) is introduced. SUDI represents the extent to which a cut-and-fill stope is susceptible to unplanned dilution. That is, having the value of this index, one may classify the cut-and-fill stopes into five groups according to robustness versus unplanned dilution: very strong, strong, moderate, weak, and very weak. SUDI is applied to10 stopes in different parts of Venarch Manganese Mines (Qom, Iran). In this way, a semi-automatic cavity monitoring system is implemented in the stopes. The regression analysis method shows that there is a relationship between SUDI and the actual unplanned dilution in equivalent linear overbreak/slough with a correlation coefficient (R2 = 0.8957).
R. Norouzi Masir; R. Khalokakaie; M. Ataei; S. Mohammadi
Abstract
Mining can become more sustainable by developing and integrating economic, environmental, and social components. Among the mining industries, coal mining requires paying a serious attention to the aspects of sustainable development. Therefore, in this work, we investigate the impacting factors involved ...
Read More
Mining can become more sustainable by developing and integrating economic, environmental, and social components. Among the mining industries, coal mining requires paying a serious attention to the aspects of sustainable development. Therefore, in this work, we investigate the impacting factors involved in the sustainable development of underground coal mining from the structural viewpoint. For this purpose, the decision-making trial and evaluation laboratory (DEMATEL) technique, which is a graph-based method, is utilized. To do so, at first, twenty effective factors are determined for three components. Then the hierarchical structure and the systematic approach are used to determine the total exerted influence or total received influence of the components. The results obtained show that the environmental and social components are the most important, and the economic components are the least important among them.
Exploitation
K. Ghanbari; M. Ataei; F. Sereshki; A. Saffari
Abstract
The presence of methane in coal mines is one of the major problems in underground coal mines. Every year, in underground coal mines, a lot of casualties due to outbursts and explosions of methane gas is occurring. Existence of this gas in the mines not only creates a difficult and dangerous situation ...
Read More
The presence of methane in coal mines is one of the major problems in underground coal mines. Every year, in underground coal mines, a lot of casualties due to outbursts and explosions of methane gas is occurring. Existence of this gas in the mines not only creates a difficult and dangerous situation for work but also makes it more expensive. The release of this gas to the air causes a further pollution of the atmosphere and increases the greenhouse gases in the air. Thus Coal Bed Methane (CBM) drainage before, during, and after coal mining is necessary. Accordingly, the CBM drainage can reduce the risks involved in these mines. In the past decade, CBM has offered a significant potential to meet the ever-growing energy demand and can decrease the disastrous events. In this research work, the CBM potential in Eastern Kelariz, Western Razmja, Bornaky, Bozorg, Razzi, and Takht coal mines of Eastern Alborz coal mines company is investigated using the rock engineering systems (RES) based on the intrinsic and geological parameters. Nine main parameters are considered for modeling CBM, and the interactions between these parameters are calculated by a proposed system. Based on the RES method, the parameters that are dominant (depth of cover) or subordinate (gas content) and also the parameters that are interactive are introduced. The proposed approach could be a simple but efficient tool in the evaluation of the parameters affecting CBM, and hence be useful in decision-making. The results obtained show that Razzi coal mine has a good potential to perform CBM drainage.
Exploitation
S. Mohammadi; M. Ataei; R. Khaloo Kakaie; A. Mirzaghorbanali
Abstract
Immediate roof caving in longwall mining is a complex dynamic process, and it is the core of numerous issues and challenges in this method. Hence, a reliable prediction of the strata behavior and its caving potential is imperative in the planning stage of a longwall project. The span of the main caving ...
Read More
Immediate roof caving in longwall mining is a complex dynamic process, and it is the core of numerous issues and challenges in this method. Hence, a reliable prediction of the strata behavior and its caving potential is imperative in the planning stage of a longwall project. The span of the main caving is the quantitative criterion that represents cavability. In this paper, two approaches are proposed in order to predict the span of the main caving in longwall projects. Cavability index (CI) is introduced based on the hybrid multi-criteria decision-making technique, combining the fuzzy analytical network processes (ANP) and the fuzzy decision-making trial and evaluation laboratory (DEAMTEL). Subsequently, the relationship between the new index and the caving span is determined. In addition, statistical relationships are developed, incorporating the multivariate regression method. The real data for nine panels is used to develop the new models. Accordingly, two models based on CI including the Gaussian and cubic models as well as the linear and non-linear regression models are proposed. The performance of the proposed models is evaluated in various actual cases. The results obtained indicate that the CI-Gaussian model possesses a higher performance in the prediction of the main caving span in actual cases when compared to the other models. These results confirm that it is not possible to consider all the effective parameters in an empirical relationship due to a higher error in the prediction.
Exploitation
M. M. Tahernejad; M. Ataei; R. Khalokakaie
Abstract
In the context of open-pit mine planning, uncertainties including commodity price would significantly affect the technical and financial aspects of mining projects. A mine planning that takes place regardless of the uncertainty in price just develops an optimized plan at the starting time of the mining ...
Read More
In the context of open-pit mine planning, uncertainties including commodity price would significantly affect the technical and financial aspects of mining projects. A mine planning that takes place regardless of the uncertainty in price just develops an optimized plan at the starting time of the mining operation. Given the price change over the life of mine, which is quite certain, optimality of the proposed plan will be eliminated. This paper presents a risk-averse decision-making tool to help mine planners in mining activities under price uncertainty. The objective is to propose mine planning in a way that a target Net Present Value (NPV) is guaranteed. In order to reach this goal, Information Gap Decision Theory (IGDT) is developed to hedge the mining project against the risk imposed by the information gap between the forecasted and actual price. The proposed approach is of low sensitivity to the price change over the life of mine, and can use the estimated prices with uncertainty. A case study at an existing iron mine demonstrates the performance of the proposed approach. The results obtained showed that the proposed method could provide a robust solution to mine planning under price uncertainty. Moreover, it was concluded that the method could present more reliable mine plans under condition of price uncertainty.
Seyyed M. Hoseini; F. Sereshki; M. Ataei
Abstract
By evaluation of the blasting results, a proper blast pattern can be presented. It is, therefore, essential to employ a reliable method to evaluate blastings for the effective control and optimization of the main cycle operations. This paper aims to propose a criterion for evaluating the blasting results ...
Read More
By evaluation of the blasting results, a proper blast pattern can be presented. It is, therefore, essential to employ a reliable method to evaluate blastings for the effective control and optimization of the main cycle operations. This paper aims to propose a criterion for evaluating the blasting results such as the fragmentation, muckpile condition, back-break, and fly rock, and to make a possible comparison between the blast parameters including the blasting pattern, explosives used, hole depths, and volume of the blasted rocks in the lead and zinc mine in Angouran (Iran). Using the global criterion, making the decision matrix dimensionless, and defining the appropriate conditions for the results obtained, a scalar value is devoted for the blasts, whose larger values denote a larger deviation from the proper blasting conditions and express undesirable blasts regarding the blasting results. By taking into consideration the mining operation conditions and weights of the results obtained, the influence of the results obtained on the mining operation index is also investigated using the genetic algorithm. Furthermore, by composing the weighted decision matrix, the blastings are evaluated and classified. Analyzing the results obtained for blastings in the Angouran mine reveals that the proposed method is an effective approach for evaluation of the blasting results and comparison of the blasts.
A. Nouri Qarahasanlou; M. Ataei; R. Khaolukakaie; B. Ghodrati; M. Mokhberdoran
Abstract
The life cycle cost of a system is influenced by its maintainability. Maintainability is a design parameter, whose operational conditions can affect it significantly. Hence, the effects of these operational conditions should be quantified early in the design phase. The proportional repair model (PRM), ...
Read More
The life cycle cost of a system is influenced by its maintainability. Maintainability is a design parameter, whose operational conditions can affect it significantly. Hence, the effects of these operational conditions should be quantified early in the design phase. The proportional repair model (PRM), which is developed based on the proportional hazard model (PHM), can be used to analyze maintainability considering the effects of the operational conditions. In PRM, the effects of the operational conditions are considered to be time-independent. However, this assumption may not be valid for some cases. The aim of this paper is to present an approach for prediction of the maintainability performance of the mining facilities considering the time-dependent influencing factors. The stratified Cox regression method (SCRM) is used to determine maintainability in the presence of time-dependent covariates for fleet vehicles operating in Sungun Copper Mine, Iran.
M. Ataei; F. Sereshki
Abstract
Like most limestone mines, which produce the raw materials required for cement companies, the transportation cost of the raw materials used in the Shahrood Cement Company is high. It has been tried to build the crushing and grinding plant close to the mine as much as possible. On the other hand, blasting ...
Read More
Like most limestone mines, which produce the raw materials required for cement companies, the transportation cost of the raw materials used in the Shahrood Cement Company is high. It has been tried to build the crushing and grinding plant close to the mine as much as possible. On the other hand, blasting has harmful effects, and the impacts of blast-induced damages on the sensitive machinery, equipment, and buildings are considerable. In such mines, among the blasting effects, blast-induced vibrations have a great deal of importance. This research work was conducted to analyze the blasting effects, and to propose a valid and reliable formula to predict the blast-induced vibration impacts in such regions, especially for the Shahrood Cement Company. Up to the present time, different indices have been introduced to quantify the blast vibration effects, among which peak particle velocity (PPV) has been widely considered by a majority of researchers. In order to establish a relationship between PPV and the blast site properties, different formulas have been proposed till now, and their frequently-used versions have been employed in the general form of , where W and D are the maximum charge per delay and the distance from the blast site, respectively, and , , and describe the site specifications. In this work, a series of tests and field measurements were carried out, and the required parameters were collected. Then in order to generalize the relationship between different limestone mines, and also to increase the prediction precision, the related data for similar limestone mines was gathered from the literature. In order to find the best equation fitting the real data, a simple regression model with genetic algorithm was used, and the best PPV predictor was achieved. At last, the results obtained for the best predictor model were compared with the real measured data by means of a correlation analysis.
M. Ataei; E. Tajvidi Asr; R. Khalokakaie; K. Ghanbari; M. R. Tavakoli Mohammadi
Abstract
Environmental impact assessment (EIA) has led to the dominance of planners on the natural environment of the regions, providing the possibility of continuously monitoring and controlling the status quo by management staff. In this regard, a new semi-quantitative model is presented for the EIA of the ...
Read More
Environmental impact assessment (EIA) has led to the dominance of planners on the natural environment of the regions, providing the possibility of continuously monitoring and controlling the status quo by management staff. In this regard, a new semi-quantitative model is presented for the EIA of the Eastern Alborz Coal Mining complex using the matrix method, and determining the corresponding impacting factors and environmental components. For this purpose, the expert opinions are used to gather the preliminary data and score the parameters involved. The effect of each impacting factor involved on each environmental component is determined by quantifying the qualitative comments. According to the results obtained, the components air quality, human health and safety, and ecology and soil of the area undergo the most environmental damages from the mining activities. Then the EIA results obtained are used to assess the sustainability of the complex using the Phillips mathematical model. The results obtained indicate that the sustainability of this complex is weak, and, therefore, the preventive environmental measures with a preference must be recommended to reduce the environmental damages to its components.
M. Mohseni; M. Ataei
Abstract
In this work, the time series modeling was used to predict the Tazareh coal mine risks. For this purpose, initially, a monthly analysis of the risk constituents including frequency index and incidence severity index was performed. Next, a monthly time series diagram related to each one of these indices ...
Read More
In this work, the time series modeling was used to predict the Tazareh coal mine risks. For this purpose, initially, a monthly analysis of the risk constituents including frequency index and incidence severity index was performed. Next, a monthly time series diagram related to each one of these indices was for a nine year period of time from 2005 to 2013. After extrusion of the trend, seasonality, and remainder constituents of the time series modeling, the final time series model of the indices was determined with high precision. The precision level of the resulting model was evaluated using the root mean square error (RMSE) method. The values obtained for the severity index and accident frequency index were 0.001 and 6.400, respectively. Evaluation of the seasonal time series constituent of the frequency index showed that, yearly, most number of accidents occurred in April, and the least one took place in January. Additionally, evaluation of the seasonal time series constituent of the severity index showed that, every year, the severest accidents occurred in October, and the least ones happened in January. Using the final model, a monthly prediction of indices was performed for a four year period of time from 2014 to 2017. Subsequently, using the known mean work hours in the mine, predictions of the number of accidents and the number of work days lost within a similar time period were made. The prediction results showed that in the future, the number of accidents and the number of work days lost would have a down-going trend such that for similar months, annually, an average 22% decrease in the number of accidents and an average 24% decrease in the number of work days lost are expected.