Exploitation
Abbas Khajouei Sirjani; Farhang Sereshki; Mohammad Ataei; Mohammad Amiri Hossaini
Abstract
The most significant detrimental consequence of blasting operations is ground vibration. This phenomenon not only causes instability in the mine walls but also extends its destructive effects to various facilities and structures over several kilometers. Various researchers have proposed equations for ...
Read More
The most significant detrimental consequence of blasting operations is ground vibration. This phenomenon not only causes instability in the mine walls but also extends its destructive effects to various facilities and structures over several kilometers. Various researchers have proposed equations for predicting Peak Particle Velocity (PPV), which are typically based on two parameters: the charge per delay and the distance to the blast site. However, according to different studies, the results of blasting operations are influenced by several factors, including the blast pattern, rock mass properties, and the type of explosives used. Since artificial intelligence technology has not yet been fully assessed in the mining industry, this study employs linear and nonlinear statistical models to estimate PPV at Golgohar Iron Ore Mine No. 1. To achieve this goal, 58 sets of blasting data were collected and analyzed, including parameters such as blast hole length, burden thickness, row spacing of the blast holes, stemming length, the number of blast holes, total explosive charge, the seismograph's distance from the blast site, and the PPV recorded by an explosive system using a detonating fuse. In the first stage, ground vibration was predicted using linear and nonlinear multivariate statistical models. In the second stage, to determine the objective function for optimizing the blast design using the shuffled frog-leaping algorithm, the performance of the statistical models was evaluated using R², RMSE, and MAPE indices. The multivariate linear statistical model, with R² = 0.9247, RMSE = 9.235, and MAPE = 12.525, was proposed and used as the objective function. Ultimately, the results showed that the combination of the statistical model technique with the shuffled frog-leaping algorithm could reduce PPV by up to 31%.
Blessing Olamide Taiwo
Abstract
Assessment of blast results is a significant approach for the improvement of mining operations. The different procedures for investigating rock fragmentation have their limitations, causing different variation prediction errors. Thus every technique is site-explicit, and applicable for a few explicit ...
Read More
Assessment of blast results is a significant approach for the improvement of mining operations. The different procedures for investigating rock fragmentation have their limitations, causing different variation prediction errors. Thus every technique is site-explicit, and applicable for a few explicit purposes. This work evaluates the existing empirical blast fragmentation model predictions in the case study of small-scale dolomite quarries. An attempt is made to compare the prediction accuracy of the modified Kuz-Ram model, Lawal 2021 model, and Kuznetsov-Cunningham-Ouchterlony (KCO) model with the WipFrag© analysis result and proposed artificial neural network (ANN) models. The prediction error analysis of the current models and that of the new proposed ANN models is evaluated using the three model assessment indices. The assessment indices uncover that the KCO model when compared to the modified Kuz-Ram model has the least error for most blast round percentage passing size predicted. However, the proposed artificial neural network models show high prediction exactness in predicting blast fragment mean size than the existing empirical models. Therefore, the proposed ANN models can be used to improve the productivity of small-scale dolomite blasting operation results for practical purposes.
M. Kamran
Abstract
The blasting operation is an important rock fragmentation technique employed in several foundation engineering disciplines such as mining, civil, tunneling, and road planning. Back-break (BB) is one of the adverse effects caused by the blasting operations that produces several effects including vulnerability ...
Read More
The blasting operation is an important rock fragmentation technique employed in several foundation engineering disciplines such as mining, civil, tunneling, and road planning. Back-break (BB) is one of the adverse effects caused by the blasting operations that produces several effects including vulnerability of mining machinery, bench slope design, and risks to the next blast-patterns due to the eruption of gases from several discontinuities in jointed rock masses. Several techniques have been executed by the researchers in order to predict BB in the blasting operations. However, this is the first work to implement a-state-of-the-art Catboost-based t-distributed stochastic neighbor embedding (t-SNE) approach to predict BB. A total of 62 datasets having 12 influential BB-generating features are collected from genuine blasting patterns. A novel dimensionality depletion technique t-SNE that operates the Kullback-Leibler divergence interpretation is employed to tailor the pioneer exaggeration of the blasting dataset. Then the t-SNE dataset obtained is split into a 70:30 ratio of the training and testing datasets. Finally, the Catboost method is implemented on a low-dimensionality blasting database. The performance evaluation criterion confirms that the BB predictive model is more stable with a goodness of fit = 99.04 in the training dataset, 97.26 in the testing datasets, and could anticipate a more accurate prediction. Moreover, the model presented in this work performs superior to the existing publicly available execution of BB. In summary, this model can be practiced in order to predict BB in several rock engineering practices and mining industry scenarios.
H. Dao; Th. L. Pham; N. Ph. Hung
Abstract
Blasting has become a crucial work in mining operation. However, it produces high-intensity seismic waves which cause some serious troubles such as injure people, fly-rock, cracking, breaking and reducing the lifetime of adjacent buildings. In Vietnam, there have been many conflicts between residents ...
Read More
Blasting has become a crucial work in mining operation. However, it produces high-intensity seismic waves which cause some serious troubles such as injure people, fly-rock, cracking, breaking and reducing the lifetime of adjacent buildings. In Vietnam, there have been many conflicts between residents and government about the compensation policy for these damages. The solution is proposed, in which a similar explosion is made and an instantaneous concussion meter is used to record the magnitude of the generated shock wave. The results received from this operation will be used to determine the effects of mining blast. In fact, that is an incorrect method because just by changing the type of explosives, the order, the explosives, etc., the shock wave will be significantly reduced. Nothing is ensured that another explosion causing a shock wave amplitude will not occur in the future. To solve this problem, this paper presents an online seismic wave monitoring system operating 24/24h, to transmit the recorded signal to an independent server located around the boundary of the mine. On the basis of the mechanism of generating explosive waves and the recording mechanism of shock waves, the authors have built a program to store records according to the permissible influence of Vietnam Standard and Circular 32/2019/TT- Vietnam Board of Directors.
M.A. Chamanzad; M. Nikkhah
Abstract
Drilling and blasting have numerous applications in the civil and mining engineering. Due to the two major components of rock masses, namely the intact rock matrix and the discontinuities, their behavior is a complicated process to be analyzed. The purpose of this work is to investigate the effects of ...
Read More
Drilling and blasting have numerous applications in the civil and mining engineering. Due to the two major components of rock masses, namely the intact rock matrix and the discontinuities, their behavior is a complicated process to be analyzed. The purpose of this work is to investigate the effects of the geomechanical and geometrical parameters of rock and discontinuities on the rock mass blasting using the UDEC software. To this end, a 2D distinct element code (DEM) code is used to simulate the stress distribution around three blast holes in some points and propagation of the radial cracks caused by blasting. The critical parameters analyzed for this aim include the normal stiffness (JKN) and shear stiffness (JKS), spacing, angle and persistence of joint, shear and bulk modulus, density of rock, and borehole spacing. The results obtained show that the joint parameters and rock modulus have very significant effects, while the rock density has less a effect on the rock mass blasting. Also the stress level has a direct relationship with JKN, JKS, bulk modulus, and the shear modulus has an inverse relationship with the rock density. Moreover, the stress variation in terms of spacing and joint angle indicates sinusoidal and repetitive changes with the place of target point with respect to the blast hole and joint set. Also with a decrease in the JKN and JKS values, the radial cracked and plastic zones around a blast hole show more development. With increase in the joint persistence, the plastic zones decrease around a blast hole.
D. Mohammadi; R. Mikaeil; J. Abdollahei Sharif
Abstract
The blasting method is one of the most important operations in most open-pit mines that has a priority over the other mechanical excavation methods due to its cost-effectiveness and flexibility in operation. However, the blasting operation, especially in surface mines, imposes some environmental problems ...
Read More
The blasting method is one of the most important operations in most open-pit mines that has a priority over the other mechanical excavation methods due to its cost-effectiveness and flexibility in operation. However, the blasting operation, especially in surface mines, imposes some environmental problems including the ground vibration as one of the most important ones. In this work, an evaluation system is provided to study and select the best blasting pattern in order to reduce the ground vibration as one of the hazards in using the blasting method. In this work, 45 blasting patterns used for the Sungun copper mine are studied and evaluated to help determine the most suitable and optimum blasting pattern for reducing the ground vibration. Additionally, due to the lack of certainty in the nature of ground and the analyses relating to this drilling system, in the first step, a combination of the imperialist competitive algorithm and k-means algorithm is used for clustering the measured data. In the second step, one of the multi-criteria decision-making methods, namely TOPSIS (Technique for Order Performance by Similarity to Ideal Solution), is used for the final ranking. Finally, after evaluating and ranking the studied patterns, the blasting pattern No. 27 is selected. This pattern is used with the properties including a hole diameter of 16.5 cm, number of holes of 13, spacing of 4 m, burden of 3 m, and ammonium nitrate fuel oil of 1100 Kg as the most appropriate blasting pattern leading to the minimum ground vibration and reduction of damages to the environment and structures constructed around the mine.
Rock Mechanics
R. Shafiei Ganjeh; H. Memarian; M. H. Khosravi; M. Mojarab
Abstract
Dynamic slope stability in open-pit mines still remains a challenging task in the computational mining design. Earthquake and blasting are two significant sources of dynamic loads that can cause many damages to open-pit mines in active seismic areas and during exploitation cycles. In this work, the effects ...
Read More
Dynamic slope stability in open-pit mines still remains a challenging task in the computational mining design. Earthquake and blasting are two significant sources of dynamic loads that can cause many damages to open-pit mines in active seismic areas and during exploitation cycles. In this work, the effects of earthquake and blasting on the stability of the NW slope of Chadormalu mine are compared by a numerical modeling method. The dynamic results show that the maximum displacement under earthquake and blasting loads within the slope are 844 mm and 146 mm, respectively. According to the shear strain results, both the earthquake and blasting waveforms are destructive, while the earthquake waveforms cause more damages to the slope. Moreover, the deterministic and probabilistic seismic hazard analyses are carried out to assess the seismicity of the mine area. The experimental results indicate that the maximum values for the vertical and horizontal accelerations are 0.55 g and 0.75 g, respectively. The maximum calculated acceleration is then scaled to the selected earthquake accelerograms. In order to show the effective impact of the established scale, the model is executed using the original accelerograms. The results obtained show that the established scale prevents overestimation and underestimation of the displacement and strain. Therefore, applying scaled accelerograms in a dynamic slope stability analysis in mine slopes leads to more reliable and robust results. The overall results show that a strong earthquake causes plenty of damages to the slope, and consequently, interrupts the mining cycle. Hence, the seismic study and dynamic slope stability should be considered as a part of the computational mining design.
M. Ataei; F. Sereshki
Abstract
Like most limestone mines, which produce the raw materials required for cement companies, the transportation cost of the raw materials used in the Shahrood Cement Company is high. It has been tried to build the crushing and grinding plant close to the mine as much as possible. On the other hand, blasting ...
Read More
Like most limestone mines, which produce the raw materials required for cement companies, the transportation cost of the raw materials used in the Shahrood Cement Company is high. It has been tried to build the crushing and grinding plant close to the mine as much as possible. On the other hand, blasting has harmful effects, and the impacts of blast-induced damages on the sensitive machinery, equipment, and buildings are considerable. In such mines, among the blasting effects, blast-induced vibrations have a great deal of importance. This research work was conducted to analyze the blasting effects, and to propose a valid and reliable formula to predict the blast-induced vibration impacts in such regions, especially for the Shahrood Cement Company. Up to the present time, different indices have been introduced to quantify the blast vibration effects, among which peak particle velocity (PPV) has been widely considered by a majority of researchers. In order to establish a relationship between PPV and the blast site properties, different formulas have been proposed till now, and their frequently-used versions have been employed in the general form of , where W and D are the maximum charge per delay and the distance from the blast site, respectively, and , , and describe the site specifications. In this work, a series of tests and field measurements were carried out, and the required parameters were collected. Then in order to generalize the relationship between different limestone mines, and also to increase the prediction precision, the related data for similar limestone mines was gathered from the literature. In order to find the best equation fitting the real data, a simple regression model with genetic algorithm was used, and the best PPV predictor was achieved. At last, the results obtained for the best predictor model were compared with the real measured data by means of a correlation analysis.
A. Siamaki; H. Bakhshandeh Amnieh
Abstract
A considerable amount of energy is released in the form of shock wave from explosive charge detonation. Shock wave energy is responsible for the creation of crushing and fracture zone around the blast hole. The rest of the shock wave energy is transferred to rock mass as ground vibration. Ground vibration ...
Read More
A considerable amount of energy is released in the form of shock wave from explosive charge detonation. Shock wave energy is responsible for the creation of crushing and fracture zone around the blast hole. The rest of the shock wave energy is transferred to rock mass as ground vibration. Ground vibration is conveyed to the adjacent structures by body and surface waves. Geological structures like faults, fractures, and fillings play important roles in the wave attenuation. Studying the mechanism of ground wave propagation from blasts gives a better understanding about the stress wave transmission and its effect on the near structures. In this research work, the stress wave transmissions from discontinuities and fillings were evaluated using a field measurement and a Universal Distinct Element Code (UDEC). A single-hole blast was conducted in the Kangir dam, and the resulting vibrations were measured in many points before and after the faults. Numerical simulation shows the effects of geo-mechanical properties of fillings on the reflection and refraction rate of the stress wave. There are more energy reflections in the rock boundaries and soil fillings, and more energy is absorbed by soil fillings compared with rock fillings. Furthermore, there is a close correlation between the ground vibration records for the Kangir dam and the numerical results. The maximum relative error between the actual records and the simulated ones was found to be 18.5%, which shows the UDEC ability for the prediction of blast vibrations.
J. Abdollahisharif; E. Bakhtavar; H. Nourizadeh
Abstract
Nitrogen oxides and carbon monoxide gases together with dust are known as the major pollutants arising during the blasting operations using the ammonium nitrate-fuel oil (ANFO) explosive at the Sungun surface mine, located in the northwest of Iran. The pollutants were monitored during some blasting operations ...
Read More
Nitrogen oxides and carbon monoxide gases together with dust are known as the major pollutants arising during the blasting operations using the ammonium nitrate-fuel oil (ANFO) explosive at the Sungun surface mine, located in the northwest of Iran. The pollutants were monitored during some blasting operations at the mine. It was concluded that the gases and dust clouds initially went up to the peak height, and were then released in the direction of wind flow. A large volume of the pollutants in the form of clouds, which fell at the mine and its surrounding environment, was usually discharged again to the atmosphere due to other mining activities. It was also found that all kinds of pollutants at the mine imposed high risks to the ecosystem of the mine. The maximum concentration of the pollutants belonged to the particles with a size more than 20 microns. The southern part of the mine had a more potential vulnerability than its northwestern part, according to the monthly wind rose diagrams of Sungun. The investigations carried out at the mine and its surrounding environment have indicated that the current traditional blasting operations have discharged a considerable amount of pollutants into the mine and the Arasbaran protected area. The current blasting pattern should be improved, especially through analyzing and changing the stemming materials and length, in order to provide a safe environment for the ecosystem of the mine and the Arasbaran area.