Exploitation
R. Norouzi Masir; M. Ataei; A. Mottahedi
Abstract
The drilling and blasting method is the first choice for rock breakage in surface or underground mines due to its high flexibility against variations and low investment costs. However, any method has its own advantages and disadvantages. The flyrock phenomenon is one of the drilling and blasting disadvantages ...
Read More
The drilling and blasting method is the first choice for rock breakage in surface or underground mines due to its high flexibility against variations and low investment costs. However, any method has its own advantages and disadvantages. The flyrock phenomenon is one of the drilling and blasting disadvantages that the mining engineers have always been faced with in the surface mine blasting operations. Flyrock may lead to fatality and destroy mine equipment and structures, and so its risk assessment is very essential. For a flyrock risk assessment, the causing events that lead to flyrock along with their probabilities and severities should be identified. For this aim, a combination of the fuzzy fault tree analysis and multi-criteria decision-making methods are used. Based on the results obtained, the relevant causing events of flyrock in surface mines can be categorized into three major groups: design error, human error, and natural error. Finally, using the obtained probabilities and severities for these three groups, the risk matrix is constructed. Based on the risk matrix, the risk numbers of flyrock occurrence due to the design errors, human errors, and natural influence are 12, 6, and 2, respectively. Hence, in order to minimize the flyrock risk, it is very vital for the engineers to select appropriate values for the design events of blasting pattern such as burden, spacing, delays, and hole diameter.
Exploitation
M. Mohseni; M. Ataei; R. Khaloo Kakaie
Abstract
The contamination of ores with wastes or materials of lower than the cut-off grade is referred to as dilution. Dilution is an undesirable phenomenon that, on one hand, reduces the product grade and, consequently, reduces the sales prices and, on the other hand, adds an extra cost to waste production. ...
Read More
The contamination of ores with wastes or materials of lower than the cut-off grade is referred to as dilution. Dilution is an undesirable phenomenon that, on one hand, reduces the product grade and, consequently, reduces the sales prices and, on the other hand, adds an extra cost to waste production. Therefore, studying and evaluating the dilution risk is important in mining, and especially in underground mining. In this work, using a powerful decision-making method, i.e. Multi-Attributive Approximation Area Comparison (MABAC), the dilution risk and ranking it in underground mines are assessed. For this purpose, the most important parameters affecting the dilution in 10 mines of the Venarch manganese mines are first identified and then weighed using the Fuzzy Delphi Analytical Hierarchy Analysis (FDAHP) method. Then using the MABAC method, the dilution risk score for each mine is estimated, and subsequently, various mines are ranked as the dilution risk. Then with the implementation of the Cavity Monitoring System (CMS) and measurement of the actual dilution values, the mines are ranked in dilution. The correct matching of the results of these two rankings indicates that the MABAC method is highly effective in the ranking of the risk. At the end, the risk ranking of the mines is done using the TOPSIS method, and the lack of full compliance with the results of this method with the actual values indicates that the MABAC method is preferable to the TOPSIS method.
Exploitation
F. Sotoudeh; M. Ataei; R. Kakaie; Y. Pourrahimian
Abstract
In mining projects, all uncertainties associated with a project must be considered to determine the feasibility study. Grade uncertainty is one of the major components of technical uncertainty that affects the variability of the project. Geostatistical simulation, as a reliable approach, is the most ...
Read More
In mining projects, all uncertainties associated with a project must be considered to determine the feasibility study. Grade uncertainty is one of the major components of technical uncertainty that affects the variability of the project. Geostatistical simulation, as a reliable approach, is the most widely used method to quantify risk analysis to overcome the drawbacks of the estimation methods used for an entire ore body. In this work, all the algorithms developed by numerous researchers for optimization of the underground stope layout are reviewed. After that, a computer program called stope layout optimizer 3D is developed based on a previously proposed heuristic algorithm in order to incorporate the influence of grade variability in the final stope layout. Utilizing the sequential gaussian conditional simulation, 50 simulations and a kriging model are constructed for an underground copper vein deposit situated in the southwest of Iran, and the final stope layout is carried out separately. It can be observed that geostatistical simulation can effectively cope with the weakness of the kriging model. The final results obtained show that the frequency of economic value for all realizations varies between 6.7 M$ and 30.7 M$. This range of variation helps designers to make a better and lower risk decision under different conditions.
Exploitation
M. Lotfi; H. Arefi; A. Bahroudi
Abstract
Hyperspectral remote sensing records reflectance or emittance data in a large sum of contiguous and narrow spectral bands, and thus has many information in detecting and mapping the mineral zones. On the other hand, the geological and geophysical data gives us some other fruitful information about the ...
Read More
Hyperspectral remote sensing records reflectance or emittance data in a large sum of contiguous and narrow spectral bands, and thus has many information in detecting and mapping the mineral zones. On the other hand, the geological and geophysical data gives us some other fruitful information about the physical characteristics of soil and minerals that have been recorded from the surface. The Sarcheshmeh mining area located in the NW-trending Uromieh-Dokhtar magmatic belt within Central Iran is mainly of porphyry type, and is associated with extensive hydrothermal alterations. Due to the semi-arid type of climate with abundant rock exposure, this area is suitable for application of remote sensing techniques. In this work, we focus on generating the alteration maps around Cu porphyry copper deposits using the spectral angle mapper algorithm on Hyperion data by applying two filters named reduction to pole and analytical signal on a total magnetic intensity map and generating the Kd map from radiometry data. What is clear is the high importance of applying the adequate pre-processing on Hyperion data because of low signal-to-noise ratio. By comparing the known deposits in the region with the results obtained by applying the mentioned methods, it is revealed that not all the higher K radiometric values are entirely associated with the hydrothermal alteration zones, and in contrast, the potassic alteration map extracted from Hyperion imagery successfully corresponds to the alteration zones around the Sarcheshmeh mining area. Finally, the results particularly obtained from processing the Hyperion data are confirmed by indices of Cu porphyry deposits in the region.
Exploitation
B. Tokhmechi; S. Ebrahimi; H. Azizi; Seyed R. Ghavami-Riabi; N. Farrokhi
Abstract
Recognition of ore deposit genesis is still a controversial challenge for economic geologists. Here, this task was addressed by the virtue of Bayesian data fusion (BDF) implementing available proofs: semi-schematic examples with two (Cu and Pb + Zn) and three (Cu, Pb + Zn and Ag) evidences. The data, ...
Read More
Recognition of ore deposit genesis is still a controversial challenge for economic geologists. Here, this task was addressed by the virtue of Bayesian data fusion (BDF) implementing available proofs: semi-schematic examples with two (Cu and Pb + Zn) and three (Cu, Pb + Zn and Ag) evidences. The data, in current paper are just concentrations of indicated elements, were collected from Angouran’s deposit in Iran at prospecting and general exploration stages. BDF was used for discrimination between three geneses of Massive Sulfide, Mississippi and SEDEX types. Better genesis recognition with clear discrimination between the geneses was achieved by BDF as compared with earlier studies. The results showed that uncertainties were reduced from 50% to less than 30% and deposit recognition was improved greatly. Furthermore, we believe that using more properties can have a beneficial effect on the overall outcome. The comparison made between 2 and 3 properties showed that the amount of probable belonging values to any type of deposit was greater in 3 properties. It was also confirmed that using the completed information from the various stages of exploration progress can be amplified and be used for genesis recognition via BDF.
Exploitation
M. Ghobadi Samani; M. Monjezi; J. Khademi Hamidi; A. Mousavinogholi
Abstract
Truck-Shovel fleet, as the most common transportation system in open-pit mines, has a significant part of mining costs, for which optimal management can lead to substantial cost reductions. Among the available dispatch mathematical models, the multi-stage approach is well suited for allocating trucks ...
Read More
Truck-Shovel fleet, as the most common transportation system in open-pit mines, has a significant part of mining costs, for which optimal management can lead to substantial cost reductions. Among the available dispatch mathematical models, the multi-stage approach is well suited for allocating trucks to respected shovels in a dynamic dispatching program. However, with this kind of modeling sequencing of the allocated trucks is not possible though it is important to find out the best solution so that getting the minimum accrued cost. To comply with the shortcoming of the traditional model, in this paper, a new hybrid model is developed and applied in Copper Mine of Iran, in which for each truck an allocation matrix is considered as input to the genetic algorithm implemented to determine the best solution. According to the obtained results, the optimal sequencing of the trucks can result in a significant (31%) cost reduction in a shift.
Exploitation
A. Saffari; M. Ataei; F. Sereshki
Abstract
Spontaneous combustion of coal is one of the most horrifying hazards in coal industries, especially in underground coal mines. Thus having a prior knowledge about the occurrence of this phenomenon in underground coal mines is of crucial importance in preventing this process, loss of life, huge economic ...
Read More
Spontaneous combustion of coal is one of the most horrifying hazards in coal industries, especially in underground coal mines. Thus having a prior knowledge about the occurrence of this phenomenon in underground coal mines is of crucial importance in preventing this process, loss of life, huge economic loss, and environmental pollution. The aim of this work is to determine the spontaneous combustion of coal potential in the Tabas Parvadeh coal mines in Iran in order to assess the effect of coal intrinsic characteristics on its occurrence. For the purpose of this investigation, the coal samples were collected from Parvadeh I to IV, and the coal intrinsic characteristics of the samples were tested. In order to determine the spontaneous combustion of coal propensity in this case study, the Crossing Point Temperature (CPT) test was used. Then the relation between the coal intrinsic characteristics and the CPT test values was determined. The results obtained showed that the B1 seam in Parvadeh II and C1 seam in Parvadeh III had a high potential of spontaneous combustion of coal potential. These results also show that an increase in the moisture, volatile matter, pyrite, vitrinite, and liptinite contents enhance the spontaneous combustion of coal tendency in these mines. The results obtained have major outcomes for the management of this phenomenon in the Tabas Parvadeh coal mines. Therefore, evaluation of the spontaneous combustion of coal hazards in coal mines should start in the first stage of design and carried on during their whole lifecycle, even after mine closure.
Exploitation
H. Bakhshandeh Amnieh; M. Hakimiyan Bidgoli; H. Mokhtari; A. Aghajani Bazzazi
Abstract
Estimating the costs of blasting operations is an important parameter in open-pit mining. Blasting and rock fragmentation depend on two groups of variables. The first group consists of mass properties, which are uncontrollable, and the second one is the drill-and-blast design parameters, which can be ...
Read More
Estimating the costs of blasting operations is an important parameter in open-pit mining. Blasting and rock fragmentation depend on two groups of variables. The first group consists of mass properties, which are uncontrollable, and the second one is the drill-and-blast design parameters, which can be controlled and optimized. The design parameters include burden, spacing, hole length, hole diameter, sub-drilling, charge weight, charge length, stemming length, and charge density. Blasting costs vary depending on the size of these parameters. Moreover, blasting brings about some undesirable results such as air overpressure, fly rock, back-break, and ground vibration. This paper proposes a mathematical model for estimating the costs of blasting operations in the Baghak gypsum mine. The cost of blasting operations in the objective function is divided into three parts: drilling costs, costs of blasting system, and costs of blasting labours. The decision variables used to minimize the costs include burden, spacing, hole diameter, stemming length, charge density, and charge weight. Constraints of the model include the boundary and operational limitations. Air overpressure in the mine is also anticipated as one of the model constraints. The non-linear model obtained with consideration of constraints is optimized by simulated annealing (SA). After optimizing the model by SA, the best values for the decision variables are determined. The value obtained for the cost was obtained to be equal to 2259 $ per 7700 tons for the desired block, which is less than the blasting costs in the Baghak gypsum mine.
Exploitation
F. Soltani; P. Moarefvand; F. Alinia; P. Afzal
Abstract
The traditional approaches of modeling and estimation of highly skewed deposits have led to incorrect evaluations, creating challenges and risks in resource management. The low concentration of the rare earth element (REE) deposits, on one hand, and their strategic importance, on the other, enhances ...
Read More
The traditional approaches of modeling and estimation of highly skewed deposits have led to incorrect evaluations, creating challenges and risks in resource management. The low concentration of the rare earth element (REE) deposits, on one hand, and their strategic importance, on the other, enhances the necessity of multivariate modeling of these deposits. The wide variations of the grades and their relation with different rock units increase the complexities of the modeling of REEs. In this work, the Gazestan Magnetite-Apatite deposit was investigated and modeled using the statistical and geostatistical methods. Light and heavy REEs in apatite minerals are concentrated in the form of fine monazite inclusions. Using 908 assayed samples, 64 elements including light and heavy REEs from drill cores were analyzed. By performing the necessary pre-processing and stepwise factor analysis, and taking into account the threshold of 0.6 in six stages, a mineralization factor including phosphorus with the highest correlation was obtained. Then using a concentration-number fractal analysis on the mineralization factor, REEs were investigated in various rock units such as magnetite-apatite units. Next, using the sequential Gaussian simulation, the distribution of light, heavy, and total REEs and the mineralization factor in various realizations were obtained. Finally, based on the realizations, the analysis of uncertainty in the deposit was performed. All multivariate studies confirm the spatial structure analysis, simulation and analysis of rock units, and relationship of phosphorus with mineralization.
Exploitation
R. Razzaghzadeh; R. Shakoor Shahabi; A. Nouri Qarahasanlou
Abstract
The appropriate operating of mining machines is affected by both the executive and environmental factors. Considering the effects and the related risks lead to a better understanding of the failures of such machines. This leads to a proper prediction of the reliability parameters of such machines. In ...
Read More
The appropriate operating of mining machines is affected by both the executive and environmental factors. Considering the effects and the related risks lead to a better understanding of the failures of such machines. This leads to a proper prediction of the reliability parameters of such machines. In this research work, the reliability and maintainability analysis of the loading and haulage machines in the Sungun Copper Mine, considering the repair condition as multiple repairable units, was performed. For this purpose, the data necessary for the loading and haulage equipment including 2 loaders and 8 dump trucks for a 15-month period was collected and categorized in 10 operational units after the system and sub-systems of the department were determined. Initially, the time between failures (TBFs) and time to repair (TTR) for each unit was calculated. Then 20 sub-systems were developed. Primarily, the Stata software was utilized to carry out the heterogeneity test for all the sub-systems. In consequence, most of the sub-systems were regarded as the heterogeneous ones, except for 7 of them including the dump truck units 1, 2, 3, 4, 5, 7, and 8 in TBFs. Hence, "PHM" that is a covariate-based model displayed the heterogeneous group. Its reliability function was also estimated. For the next step, the trend tests were done on the non-heterogeneous sub-systems by means of the Minitab software. The homogeneous sub-systems with failure trend were modeled by “NHPP”. Afterwards, the non-trended sub-systems formed the data group. Later, the correlation tests were modeled by “HPP”. Finally, the reliability and maintainability functions were calculated with the 95% confidence level.
Exploitation
S. Salarian; O. Asghari; M. Abedi; S. K. Alilou
Abstract
This work aims at figuring out the spatial relationships between the geophysical and geological models in a case study pertaining to copper-sulfide mineralization through an integrated 3D analysis of favorable target. The Ghalandar Skarn-Porphyry Cu Deposit, which is located in NW Iran, is selected for ...
Read More
This work aims at figuring out the spatial relationships between the geophysical and geological models in a case study pertaining to copper-sulfide mineralization through an integrated 3D analysis of favorable target. The Ghalandar Skarn-Porphyry Cu Deposit, which is located in NW Iran, is selected for this research work. Three geophysical surveys of direct current electrical resistivity and induced polarization tomography along with magnetometry are performed to construct the physical properties of electrical resistivity, chargeability, and magnetic susceptibility, respectively. Inverse modeling and geostatistical interpolation are utilized to generate the physical 3D models. A 3D model of Cu grade is generated using ordinary kriging; however, the indicator kriging method is run to design a 3D model of rock types through incorporating the drilling results. Block models of geophysical and geological characteristics are cast in a similar 3D mesh to investigate their relationships in copper mineralization. A concentration-volume multi-fractal method is utilized to divide each model into its sub-sets, where the most productive portions in association with Cu-bearing mineralization are distinguished. Note that sub-sets of geophysical models are spatially matched with geological models of Cu grade and rock types. The zones with low electrical resistivity, high chargeability, and low magnetic susceptibility correspond to the main source of Cu mineralization in a dominated skarn rock type setting.
Exploitation
A. Mozafari; A. H. Bangian Tabrizi; M. Taji; A. Parhizkar
Abstract
In this paper, we present an integrated model to find the optimum size of blast block that uses (i) a multi-criteria decision-making method to specify the applicable size of the mineable block; (ii) a linear programming method for the selection of the blasted areas to be excavated and in deciding the ...
Read More
In this paper, we present an integrated model to find the optimum size of blast block that uses (i) a multi-criteria decision-making method to specify the applicable size of the mineable block; (ii) a linear programming method for the selection of the blasted areas to be excavated and in deciding the quantity of ores and wastes to be mined from each one of the selected blocks. These two methods use improved estimates of the orebody characteristics utilizing the blast hole data in addition to the usual borehole statistics to improve the prediction accuracy of the block level ore body characteristics. This work aims to make a mathematical model to figure out the ideal width and length of the blast block in order to curtail drilling and blasting expenses in open-pit mines. As a consequence, the effective blast block size is heeded so as to decrease the expenses of drilling and blasting. Furthermore, a complete set of actual principles is presented to specify the applicable size of the mineable block by means of the multi-criteria decision-making method of fuzzy logic. The aforementioned model is practiced to forecast the block size necessary for the purpose of production planning. Next, a mixed integer programming model is developed to blast planning in order to select the optimal size of the blast block by considering the mineable block. The proposed model is applied in the Chadormalu iron ore mine and the rationality of the model is demonstrated by the outcomes of dissimilar circumstances.
Exploitation
O. Gholampour; A. Hezarkhani; A. Maghsoudi; M. Mousavi
Abstract
This paper presents a quantitative modeling for delineating alteration zones in the hypogene zone of the Miduk porphyry copper deposit (SE Iran) based on the core drilling data. The main goal of this work was to apply the Ordinary Kriging (OK), Artificial Neural Networks (ANNs), and Concentration-Volume ...
Read More
This paper presents a quantitative modeling for delineating alteration zones in the hypogene zone of the Miduk porphyry copper deposit (SE Iran) based on the core drilling data. The main goal of this work was to apply the Ordinary Kriging (OK), Artificial Neural Networks (ANNs), and Concentration-Volume (C-V) fractal modelings on Cu grades to separate different alteration zones. Anisotropy was investigated and modeled based on calculating the experimental semi-variograms of Cu value, and then the main variography directions were identified and evaluated. The block model of Cu grade was generated using the kriging and ANN modelings followed by log-log plots of the C-V fractal modeling to determine the Cu threshold values used in delineating the alteration zones. Based on the correlation between the geological models and the results derived via C-V fractal modeling, Cu values less than 0.479% resulting from kriging modeling had more overlapped voxels with the phyllic alteration zone by an overall accuracy (OA) of 0.83. The spatial correlation between the potassic alteration zone in a 3D geological model and the high concentration zones in the C-V fractal model showed that Cu values between 0.479% and 1.023%, resulting from kriging modeling, had the best overall accuracy (0.78). Finally, based on the correlation between classes in the binary geological and fractal models of the hypogene zone, this research work showed that kriging modeling could delineate the phyllic (with lower grades) and potassic (with higher grades) alteration zones more effectively compared with ANNs.
Exploitation
H.R. Nezarat; Seyed M. E. Jalali; M. Nazari
Abstract
Knowledge of the airflow distribution inside a Tunnel Boring Machine (TBM) can create a safe working environment for workers and machinery. The airflow quality and the related mass flow rate in the ventilation system should be sufficient to dilute gases and remove dust inside the tunnel. In this work, ...
Read More
Knowledge of the airflow distribution inside a Tunnel Boring Machine (TBM) can create a safe working environment for workers and machinery. The airflow quality and the related mass flow rate in the ventilation system should be sufficient to dilute gases and remove dust inside the tunnel. In this work, airflow distribution in the single shield TBM tunnel was studied using computational fluid dynamics. The finite volume-based finite element method was used in the simulation based on the 3D complex geometry of TBM. In order to validate the numerical results, the air velocity inside the Chamshir tunnel was measured experimentally at different sections. With a length of 7050 m and a final diameter of 4.6 m, the Chamshir water transport tunnel is located in the south of Iran. The results obtained show that there is not enough airflow in 59.6% of the TBM space in the current working conditions. In other words, there are many dead zones from the control cabin to the end of gantry 6 in the backup system. Several applicable scenarios were studied to remove the dead zone area and optimize the airflow velocity by employing high capacity jet fan in the ventilation system. The results show that the dead zone volume can be decreased by about 5.21% by increasing the airflow rate of the jet fan.
Exploitation
S. Soltani-Mohammadi; A. Soltani; B. Sohrabian
Abstract
Due to the nature of the geological and mining activities, different input parameters in the grade estimation and mineral resource evaluation are always tainted with uncertainties. It is possible to investigate the uncertainties related to the measurements and parameters of the variogram model using ...
Read More
Due to the nature of the geological and mining activities, different input parameters in the grade estimation and mineral resource evaluation are always tainted with uncertainties. It is possible to investigate the uncertainties related to the measurements and parameters of the variogram model using the fuzzy kriging method instead of the kriging method. The fuzzy kriging theory has already been the subject of relatively various research studies but the main weak point in such studies is that the results of the fuzzy estimations are not used in decision-making and planning. A very common, but key, tool of decision-making for mining engineers is the tonnage-average grade models. Under conditions where measurements or/and variogram model parameters are tainted with uncertainties, the tonnage-average grade model will be uncertain as well. Therefore, it is necessary to use the fuzzy tonnage-grade model instead of the crisp ones, and the next analysis steps and decision-makings are done accordingly. In this paper, the computational principles of the fuzzy tonnage-average grade curve and a case study regarding its usage are presented.
Exploitation
H. Moini; F. Mohammad Torab
Abstract
Kriging is an advanced geostatistical procedure that generates an estimated surface or 3D model from a scattered set of points. This method can be used for estimating resources using a grid of sampled boreholes. However, conventional ordinary kriging (OK) is unable to take locally varying anisotropy ...
Read More
Kriging is an advanced geostatistical procedure that generates an estimated surface or 3D model from a scattered set of points. This method can be used for estimating resources using a grid of sampled boreholes. However, conventional ordinary kriging (OK) is unable to take locally varying anisotropy (LVA) into account. A numerical approach has been presented that generates an LVA field by calculating the anisotropy parameters (direction and magnitude) in each cell of the estimation grid. After converting the shortest anisotropic distances to Euclidean distances in the grid, they can be used in variography and kriging equations (LVAOK). The ant colony optimization (ACO) algorithm is a nature-inspired metaheuristic method that is applied to extract image features. A program has been developed based on the application of ACO algorithm, in which the ants choose their paths based on the LVA parameters and act as a moving average window on a primary interpolated grid. If the initial parameters of the ACO algorithm are properly set, the ants would be able to simulate the mineralization paths along continuities. In this research work, Choghart iron ore deposit with 2,447 composite borehole samples was studied with LVA-kriging and ACO algorithm. The outputs were cross-validated with the 111,131 blast hole samples and the Jenson-Shannon (JS) criterion. The obtained results show that the ACO algorithm outperforms both LVAOK and OK (with a correlation coefficient value of 0.65 and a JS value of 0.025). Setting the parameters by trial-and-error is the main problem of the ACO algorithm.
Exploitation
P. Afzal; M. Yusefi; M. Mirzaie; E. Ghadiri-Sufi; S. Ghasemzadeh; L. Daneshvar Saein
Abstract
The aim of this work was to delineate the prospects of podiform-type chromite by staged factor analysis and geochemical mineralization prospectivity index in Balvard area, SE Iran. The stream sediment data and fault density were used as the exploration features for prospectivity modeling in the studied ...
Read More
The aim of this work was to delineate the prospects of podiform-type chromite by staged factor analysis and geochemical mineralization prospectivity index in Balvard area, SE Iran. The stream sediment data and fault density were used as the exploration features for prospectivity modeling in the studied area. In this regard, two continuous fuzzified evidence layers were generated and integrated using fuzzy operator. Then fractal modeling was used for defuzzification of the prospectivity model obtained. Furthermore, the prediction-area plot was used for evaluation of the predictive ability of the generated target areas. The results obtained showed that using the prospectivity model, 82% of mineral occurrences was predicted in 18% of the studied area. In addition, the target areas were correlated with the geological particulars including ultrabasic and serpentinization rocks, the host rocks of the podiform-type chromite deposit type.
Exploitation
H. Shahsavani
Abstract
Recently, the non-destructive methods have become of interest to the scientists in various fields. One of these method is Ground Penetration Radar (GPR), which can provide a valuable information from underground structures in a friendly environment and cost-effective way. To increase the signal-to-noise ...
Read More
Recently, the non-destructive methods have become of interest to the scientists in various fields. One of these method is Ground Penetration Radar (GPR), which can provide a valuable information from underground structures in a friendly environment and cost-effective way. To increase the signal-to-noise (S/N) ratio of the GPR data, multi-fold acquisition is performed, and the Common-Mid-Points (CMPs) are acquired. Compared to the traditional CMP method, which is applied to a CMP, the Common-Reflection-Surface (CRS) method is introduced for seismic data processing considering the neighboring CMPs. In addition, instead of a point on the reflector, CRS assumes that the reflector is part of a circle. With these two characteristics, CRS produces a stack section with a high S/N ratio. The Common-Diffraction-Surface (CDS) method, which is a simplified version of CRS, enhances the diffractors related to the underground anomalies like pipeline, flume, and caves. We apply the CDS stack method on a multi-fold GPR data and compare it to the CRS results. These results show that the CDS method can provide a high S/N ratio stack section compared to the traditional CMP method.
Exploitation
I. M. Jiskani; F. I. Siddiqui
Abstract
Faults are the most critical tectonic factors in geological structures, which have major economic impacts on mining economics. Thus it is necessary to understand faults in order to identify the actual risks and complications associated with mining. In the preliminary investigation of the Sonda-Jherruck ...
Read More
Faults are the most critical tectonic factors in geological structures, which have major economic impacts on mining economics. Thus it is necessary to understand faults in order to identify the actual risks and complications associated with mining. In the preliminary investigation of the Sonda-Jherruck coalfield, 3D geological modeling was not performed. The purpose of this work was to perform fault orientation modeling in order to document pre-mine planning information and discuss the obstacles that may cause problems in mine planning and development stages. Using the drill hole data, 3D fault models based on the calculation of dip angle and dip direction were established. In the first step, surface models of coal seams were established by applying the triangulation method to the coal seam roof elevations. Then an appropriately oriented grid was overlain to regularize the data and to find the unknown points. The calculation of dip and dip direction was done using an algorithm. The models showing the variation in the dip and dip direction were generated using the inverse distance squared weighted (ID2W) interpolation technique. The generated 3D models were compared with the pre-existing fault lines (based on the aerial map). An attempt was made to create comprehensive models that demonstrate a better understanding of the faults in the studied area.
Exploitation
H. Nikoogoftar Safa; A. Hezarkhani
Abstract
In this paper, we aim to present a quantitative modeling for delineating the alteration zones and lithological units in the hypogene zone of Masjed-Daghi Cu-Au porphyry deposit (NW Iran) based on the drill core data. The main goal of this work is to apply Ordinary Kriging (OK) and concentration-volume ...
Read More
In this paper, we aim to present a quantitative modeling for delineating the alteration zones and lithological units in the hypogene zone of Masjed-Daghi Cu-Au porphyry deposit (NW Iran) based on the drill core data. The main goal of this work is to apply Ordinary Kriging (OK) and concentration-volume (C-V) fractal model based on Cu grades in order to separate the different alteration zones and lithological units. Initially, anisotropy was investigated and modeled based on calculating the experimental semi-variograms of the Cu values, and the main variography directions were identified and evaluated. Then a block model of the Cu grades was generated using the kriging, and the estimation obtained for OK was applied to the C-V fractal model. The C–V log–log plot based on the estimation method represents the various alteration and lithological zones via threshold values. The comparison and interpretation of the alteration zones and lithological units based on the C–V fractal modeling proved that the method was acceptable and capable of correctly delineating the alteration and lithological units. Regarding the correlation derived from log ratio matrix (used to compare the geological model with the C-V fractal results), it was observed that Cu values less than 0.4% were obtained for OK overlapped voxels with the phyllic alteration zone by an overall accuracy (OA) of 0.737. The spatial correlation between the potassic alteration zones resulting from a 3D geological modeling and the high concentration zones in the C-V fractal model based on OK indicated that the alteration zone contained Cu values greater than 0.4% with OA of 0.791. Also using this method, trustworthy results were obtained for the rock units.
Exploitation
S. Tabasi; M. Kurdi; M. Bahrammanesh
Abstract
The objective of this work was to investigate the potential of three different kinds of Iranian peat and swamp soils as sources of organic matter (OM) in the Golestan Province, Northern Iran. Comparison of the peats was done in terms of the degree of humification on the von Post scale. Moreover, the ...
Read More
The objective of this work was to investigate the potential of three different kinds of Iranian peat and swamp soils as sources of organic matter (OM) in the Golestan Province, Northern Iran. Comparison of the peats was done in terms of the degree of humification on the von Post scale. Moreover, the X-ray fluorescence, X-Ray Diffractometry, and Fourier transform infra-red (FT-IR) techniques were used to investigate their mineralogical and geochemical properties. Also a method was tested for the sequential extraction of OM from Suteh peat, in which the following organic solvents were utilised in sequence: (I) ethyl ether, (II) ethanol, (III) 1,4-dioxane, and (IV) n-hexane; each extract was analysed by FT-IR spectroscopy, and the residue was used in the next phase. The results obtained indicated that OMOM extracted during each step was different; nevertheless, some spectral features such as those attributable to lignin, carbohydrate, phenol, wax, and fats were common to all phases. Major absorbance spectra were related to specific extraction steps, namely polysaccharide, proteins, alkyne, humic acids, esters, aldehydes, and cellulose.
Exploitation
B. Ünver; M.S. Ünal
Abstract
A daunting mine disaster took place in 13 May 2014 at Soma and 301 men lost their lives. Brief information about the Eynez coal mine and some of the inherent characteristics of the field in terms of their effects on mining are presented. This paper basically concentrates on the factors that played an ...
Read More
A daunting mine disaster took place in 13 May 2014 at Soma and 301 men lost their lives. Brief information about the Eynez coal mine and some of the inherent characteristics of the field in terms of their effects on mining are presented. This paper basically concentrates on the factors that played an important role in the occurrence of this disaster. Progress of mine fire, firefighting, and rescue activities were only given in basics. Mine fire started suddenly without giving any sign at the hearth of the mine. Sudden occurrence of mine fire and start location properties reveal that the root cause of this disaster was probably not directly related to spontaneous heating of coal. Analysis of roof caving mechanism, subsidence profiles, production history, and overall conditions in the mine showed that the mine fire most probably started as a result of a sudden caving above the nearby sealed out old production panels. Upon caving, pressure of the gas present in uncaved voids and unconsolidated goaf must have increased and gas must have overflown through abundant cracks towards the mine. Gas exuding under moderate pressure might possibly be ignited by a non-ex-proof belt conveyor drive motor starting the mine fire.
Exploitation
M. Bavand Savadkoohi; B. Tokhmechi; E. Gloaguen; A.R. Arab-Amiri
Abstract
Computer graphics offer various gadgets to enhance the reconstruction of high-order statistics that are not correctly addressed by the two-point statistics approaches. Almost all the newly developed multiple-point geostatistics (MPS) algorithms, to some extent, adapt these techniques to increase the ...
Read More
Computer graphics offer various gadgets to enhance the reconstruction of high-order statistics that are not correctly addressed by the two-point statistics approaches. Almost all the newly developed multiple-point geostatistics (MPS) algorithms, to some extent, adapt these techniques to increase the simulation accuracy and efficiency. In this work, a scrutiny comparison between our recently developed MPS algorithm, the cross-correlation-wavelet simulation (CCWSIM), and a well-known MPS algorithm, FILTERSIM, is performed. The main motivation to benchmark these two algorithms is that both exploit some digital image processing filters for feature extraction. Indeed, both algorithms compute the similarity (or dissimilarity) between data events in simulation grid and training image in the feature space. In order to compare the accuracy of the algorithms, some statistics such as facies proportion, variogram, and connectivity function are computed. The results obtained reveal an excellent agreement of the CCWSIM realizations with the training image rather than FILTERSIM. Furthermore, on average, the required simulation runtime for CCWSIM is at least 10 times less than that for FILTERSIM.
Exploitation
I. Masoumi; Gh.R. Kamali; O. Asghari
Abstract
Dilution can best be defined as the proportion of waste tonnage to the total weight of ore and waste in each block. Predicting the internal dilution based on geological boundaries of waste and ore in each block can help engineers to develop more reliable long-term planning designs in mining activities. ...
Read More
Dilution can best be defined as the proportion of waste tonnage to the total weight of ore and waste in each block. Predicting the internal dilution based on geological boundaries of waste and ore in each block can help engineers to develop more reliable long-term planning designs in mining activities. This paper presents a method to calculate the geological internal dilution in each block and to correct the ultimate grade of each geological block according to the internal dilution values that have already been calculated for each one of them. In this regard, the input data is first indexed based on the lithological logs of drill holes. The occurrence probabilities of ore and waste in each block are calculated via 100 realizations using the sequential indicator simulation. Dilution is computed as the ratio of waste rock tonnage to the total tonnage of ore and waste. Furthermore, joint simulation of the continuous variables is performed for each mining block using the minimum/maximum auto-correlation factors. In the next step, for each block, the final grade variables including iron and iron oxide are computed by considering the calculated internal dilution. These analyses are applied to the Gohar Zamin iron ore deposit, and the actual internal dilution calculated based on the lithological logs of blast holes is compared with the same values obtained based on the proposed method in each block. The results obtained were found to be satisfactory.
Exploitation
K. Mostafaei; H. R. Ramazi
Abstract
Madan Bozorg is an active copper mine located in NE Iran, which is a part of the very wide copper mineralization zone named Miami-Sabzevar copper belt. The main goal of this research work is the 3D model construction of the induced polarization (IP) and resistivity (Rs) data with quantifying the uncertainties ...
Read More
Madan Bozorg is an active copper mine located in NE Iran, which is a part of the very wide copper mineralization zone named Miami-Sabzevar copper belt. The main goal of this research work is the 3D model construction of the induced polarization (IP) and resistivity (Rs) data with quantifying the uncertainties using geostatistical methods and drilling. Four profiles were designed and surveyed using the CRSP array based on the boreholes. The data obtained was processed, 2D sections of IP and Rs were prepared for each profile by inverting the data, and these sections were evaluated by some exploratory boreholes in the studied area. Based on the geostatistical methods, 3D block models were constructed for the 2D IP and Rs data, and the uncertainties in the prepared models were obtained. The mineralization location was determined according to the geophysical detected anomalies. In order to check the models, some locations were proposed for drilling in the cases that the borehole data was unavailable. The drilling results indicated a high correlation between the identified anomalies from the models and mineralization in the boreholes. The results obtained show that it is possible to construct 3D models from surveyed 2D IP & Rs data with an acceptable error level. In this way, the suggested omitted drilling locations were optimized so that more potentials could be obtained for copper exploration by the least number of boreholes.