Mineral Processing
Ahmed Mohammedelmubarak Ah Abbaker; Nevzat Aslan
Abstract
This work optimizes coarse particle flotation using microbubble-assisted flotation in a cationic environment created by dodecylamine (DDA). The flotation efficiency of coarse quartz particles (D50 = 495 μm) was investigated through an examination of the interactions between microbubbles (20-30 μm), ...
Read More
This work optimizes coarse particle flotation using microbubble-assisted flotation in a cationic environment created by dodecylamine (DDA). The flotation efficiency of coarse quartz particles (D50 = 495 μm) was investigated through an examination of the interactions between microbubbles (20-30 μm), the cationic environment, and various operational parameters. A systematic approach utilizing factorial and Box-Behnken experimental designs was employed to evaluate the effects of the multiple variables. These variables included the dodecylamine (DDA) concentration, methyl isobutyl carbinol (MIBC) concentration, impeller speed, pulp density, the addition of fine particles, and the presence of microbubbles. The DDA concentration and the impeller speed significantly impacted the coarse particle recovery, while microbubbles increased recovery by 15% under non-optimized conditions; optimization revealed a more negligible difference. The optimized conditions achieved maximum recoveries of 99.47% and 97.88% with and without microbubbles, respectively, indicating the minimal effect when other parameters were optimized. This research work shows that a careful optimization of the flotation parameters can achieve high coarse particle recovery rates, with microbubbles playing a less significant role than anticipated. These findings suggest that optimizing the conventional parameters may be more crucial than the microbubble introduction for enhancing the flotation efficiency of larger particles. The work contributes to our understanding of coarse particle flotation, and provides insights for improving the mineral processing techniques for challenging the particle sizes.
Exploitation
Pouya Nobahar; Yashar Pourrahimian; Roohollah Shirani Faradonbeh; Fereydoun Mollaei Koshki
Abstract
Mineral reserve evaluation and ore type detection using data from exploratory boreholes are critical in mine design and extraction. However, preparing core samples and conducting chemical and physical tests is a time-consuming and costly procedure, slowing down the modeling process. This paper presents ...
Read More
Mineral reserve evaluation and ore type detection using data from exploratory boreholes are critical in mine design and extraction. However, preparing core samples and conducting chemical and physical tests is a time-consuming and costly procedure, slowing down the modeling process. This paper presents a novel Deep Learning (DL)-based model to recognize the types of kaolinite samples. For this purpose, a dataset containing the images of drilled cores and their types determined from conventional chemical and physical analyses was used. Eight Convolutional Neural Network (CNN) topologies based on individual features were developed, named A, B, C, D, E, F, G, and H. Six of the eight proposed CNN topologies described above had accuracy below 80%, whereas two of them, model A and H, had higher accuracy than other topologies. Due to their similarity in results, both of them analyzed deeply. Model A was more efficient, with 90% accuracy, than model B, with 84% accuracy. Furthermore, the class detection performance of model A was further evaluated using different indices, including precision, recall, and F1-score, which resulted in values of 92%, 92%, and 90%, respectively, which are acceptable accuracies to identify the type of samples when using this approach on six different types of kaolinite.
Mineral Processing
Seyyed Mohsen Zamzami; Javad Vazifeh Mehrabani
Abstract
In this research, solid phase settling process from the liquid phase were optimized simultaneously on the different responses, using the response surface methodology (RSM). The effect of solid percentage, flocculant dosage, temperature, and pulp pH were evaluated on the responses of solid settling velocity, ...
Read More
In this research, solid phase settling process from the liquid phase were optimized simultaneously on the different responses, using the response surface methodology (RSM). The effect of solid percentage, flocculant dosage, temperature, and pulp pH were evaluated on the responses of solid settling velocity, water turbidity, viscosity and density of settled pulp. The results showed that by increasing the flocculant dosage from 0.5 to 3.5 g/ton, settled pulp viscosity decreases from 49.05 cSt to 17.54 cSt. The higher values of pulp pH as well as low amount of solid percentage resulted in high water turbidity, which shows the lack of contact between flocs and suspended particles. The results indicated that the pulp solid percentage and the flocculants dosage are the most significant parameters on the responses. Optimum test conditions were obtained in industrial mode by using 5 g/t flocculant, solid percentage 23.96%, pH=7.5 temperature of the pulp 21.5°C in which condition, settling rate, pulp viscosity, pulp density and water turbidity were predicted to be 13.23 cm/min, 5.1 cSt, 1.61 g/cm3 and 15.7 NTU respectively. Repetition test in the model predicted optimum condition was carried out and verified the predicted optimized condition.
Environment
Behnoosh Khataei; Farhad Qaderi; Farzad Mosavat
Abstract
The increase in the number of factories, the industrialization of human life, and the increasing use of industrial paints have caused an increase in dye wastewater and consequent environmental pollution. Discharging wastewater containing the dyes mentioned above, which are often carcinogenic, is a severe ...
Read More
The increase in the number of factories, the industrialization of human life, and the increasing use of industrial paints have caused an increase in dye wastewater and consequent environmental pollution. Discharging wastewater containing the dyes mentioned above, which are often carcinogenic, is a severe threat to living organisms. In this research, a photocatalytic method (as an advanced oxidation method) using zinc oxide nanoparticles was investigated to treat the colored wastewater containing methylene blue. This type of nanoparticle is cheap (based on the used synthesis method), abundant and readily available, and low in toxicity. For this purpose, an evaluation of the optimal ratio between zinc acetate and polyvinylpyrrolidone for the synthesis of zinc oxide nanoparticles was carried out. Furthermore, the simultaneous decreasing and increasing effects of independent parameters (pH, irradiation time, methylene blue concentration, zinc acetate to PVP ratio) on the efficiency of the photocatalytic process and kinetic model were evaluated. The results showed that the best pollutant removal efficiency (91.7%) was obtained using the ratio of zinc acetate and polyvinylpyrrolidone equal to 33.67 in 60 minutes of irradiation time. This result shows that the lower ratio of zinc acetate to polyvinylpyrrolidone indicates higher dye removal.
Exploitation
Mehdi Rahmanpour; Golpari Norozi; Hassan Bakhshandeh Amnieh
Abstract
Drift-and-fill mining is a variation of cut-and-fill mining method. Drift-and-fill mining method refers to the excavation of several parallel drifts in ore. Excavation of a new drift could start when its adjacent drifts are backfilled or not excavated. The amount of ore material and its grade depends ...
Read More
Drift-and-fill mining is a variation of cut-and-fill mining method. Drift-and-fill mining method refers to the excavation of several parallel drifts in ore. Excavation of a new drift could start when its adjacent drifts are backfilled or not excavated. The amount of ore material and its grade depends on the excavation sequence of drifts. As the number of drifts increases, one will need a model to optimize the drift excavation and backfilling sequence. This paper introduces a mathematical model to determine the optimal drift-and-fill sequence while the safety constraints, excavation, and backfilling capacities and their dependencies are satisfied. The model seeks to minimize the deviations from some predefined goals, and it handles the long-term and short-term constraints in separate and integrated scenarios. An application of the model is presented based on the data available from a lead/zinc underground mining project. There are 91 drifts in the selected level. Based on the monthly planning horizon, the integrated model leads to the slightest deviations in both the mining rate and average grade, and the deviation from the predetermined annual goals is negligible. For the case where long-term and short-term plans are determined separately, the deviation is approximately 10%.
Exploration
shirin Jahanmiri; Ali Aalianvari; Malihehe Abbaszadeh
Abstract
Groundwater inflow is a critical subject within the domains of hydrology, hydraulic engineering, hydrogeology, rock engineering, and related disciplines. Tunnels excavated below the groundwater table, in particular, face the inherent risk of groundwater seepage during both the excavation process and ...
Read More
Groundwater inflow is a critical subject within the domains of hydrology, hydraulic engineering, hydrogeology, rock engineering, and related disciplines. Tunnels excavated below the groundwater table, in particular, face the inherent risk of groundwater seepage during both the excavation process and subsequent operational phases. Groundwater inflows, often perceived as rare geological hazards, can induce instability in the surrounding rock formations, leading to severe consequences such as injuries, fatalities, and substantial financial expenditures. The primary objective of this research is to explore the application of machine learning techniques to identify the most accurate method of forecasting tunnel water seepage. The prediction of water loss into the tunnel during the forecasting phase employed a tree equation based on gene expression programming (GEP). These results were compared with those obtained from a hybrid model comprising particle swarm optimization (PSO) and artificial neural networks (ANN). The Whale Optimization Algorithm (WOA) was selected and developed during the optimization phase. Upon contrasting the aforementioned methods, the Whale Optimization Algorithm demonstrated superior performance, precisely forecasting the volume of water lost into the tunnel with a correlation coefficient of 0.99. This underscores the effectiveness of advanced optimization techniques in enhancing the accuracy of groundwater inflow predictions and mitigating potential risks associated with tunneling activities.
Exploitation
Hossein Mirzaei Nasir Abad; Mehrnaz Mohtasham; Farshad Rahimzadeh-Nanekaran
Abstract
Transportation of materials is the most cost-intensive component in open-pit mining operations. The aim of the allocation models is to manage and optimize transportation activities, leading to reduced wasted time, and ultimately, increasing profitability while reducing operational costs. Given that the ...
Read More
Transportation of materials is the most cost-intensive component in open-pit mining operations. The aim of the allocation models is to manage and optimize transportation activities, leading to reduced wasted time, and ultimately, increasing profitability while reducing operational costs. Given that the implementation of allocation models is one of the essential requirements in Iranian mining operations, this research work focuses on the transportation system in the Sungun copper mine, one of the largest mines in Iran, and highlights the challenges faced by the fixed allocation approach. The aim is to develop and implement a mathematical model to evaluate its performance, and suggest improvements. The allocation model attempts to optimize truck capacity utilization and maximize mining production. Implementing the model in the mine results in a 13.42% increase in total production compared to the conventional method, with a cost increase of 14.7%. The model shows the potential to meet operational and technical constraints to achieve optimal production. Overall, the developed model, with optimized management and improved fleet efficiency, outperforms the traditional haulage method in the mine.
Mineral Processing
Reza Khodadadi Bordboland; Asghar Azizi; Mohammad Reza Khani
Abstract
The global growth of aluminum demand with the modernization of our society has led to the interest in developing alternative methods to produce aluminum from non-bauxite and low-grade resources such as shale bauxites. For such reserves, the conventional Bayer process is challenging and is not efficient ...
Read More
The global growth of aluminum demand with the modernization of our society has led to the interest in developing alternative methods to produce aluminum from non-bauxite and low-grade resources such as shale bauxites. For such reserves, the conventional Bayer process is challenging and is not efficient to extract aluminum, and the sintering process is known to be effective. Thus, this study aimed to scrutinize the technical feasibility of alumina extraction from an Iranian low-grade (shale) bauxite ore containing 36.22% Al2O3, 22.11% SiO2, 20.42% Fe2O3, 3.33% TiO2, and 3.13% CaO. In this regard, the sintering process with lime-soda followed by alkaline leaching was adopted to extract alumina, and response surface modeling was employed to assess the important parameters such as the sintering temperature, Na2O(caustic) concentration, CaO/SiO2 molar ratio, and Na2O/Al2O3 molar ratio. The findings indicated that the extraction rate improved by increasing the sintering temperature and CaO/SiO2 ratio and decreasing the Na2O(caustic) dose and Na2O/Al2O3 ratio. It was also found that the Na2O(caustic) concentration, sintering temperature, and interactive effect of Na2O(caustic) concentration with Na2O/Al2O3 ratio had the greatest influence on the extraction efficiency. The process optimization was conducted applying the desirability function approach, and more than 71% of Al2O3 was extracted at 1150 °C sintering temperature, 2.1 CaO/SiO2 molar ratio, 0.9 Na2O/Al2O3 molar ratio and 30 g/L Na2O(caustic) dose. Ultimately, it was concluded that a lime-soda sintering process at 1150 °C followed by one-step alkaline leaching with Na2O(caustic) at 90 °C could be metallurgically efficient for treating the low-grade (shale) bauxites.
Exploitation
Rym Khettabi; Issam Touil; Mohamed Kezzar; Mohamed R. Eid; Fatima.Z Derdour; Kamel Khounfais; Lakhdar Khochmane
Abstract
It is well-established that the response surface methodology (RSM) is commonly employed to establish the differences between the predicted values and those observed experimentally. This study mainly goals on the impact of four drilling factors including weight on the bit (WOB), the rotating rapidity ...
Read More
It is well-established that the response surface methodology (RSM) is commonly employed to establish the differences between the predicted values and those observed experimentally. This study mainly goals on the impact of four drilling factors including weight on the bit (WOB), the rotating rapidity of the bit, RPM, cutting angle , and rock resistance on the penetration rate of the drilling tool. In this examination, three kinds of limestone rocks were considered. The planned assessments were carried out at three stages of the considered four input variables. The statistical analysis was realized using both RSM approach and analysis of variance (ANOVA). This analysis allowed us to develop the appropriate penetration model with a higher determination coefficient of 96.19%, which demonstrates the high correlation between the predicted and experimental data, and consequently, it can be concluded that the obtained model is highly suitable for the prediction of the penetration rate. Also from variance analysis, the results obtained show that rotational speed, RPM, and weight on the bit (WOB) parameters, as well as the nature of the rock, which is determined by the rock compressive resistance, having a significant effect on the penetration rate; however, the rake angle has little effect. Finally, the optimal parameters were determined to find the best possible penetration rate of the drilling tool.
H. hadizadeh Ghaziania; M. Monjezi; A. Mousavi; H. Dehghani; E. Bakhtavar
Abstract
The production cycle in open-pit mines includes the drilling, blasting, loading, and haulage. Since loading and haulage account for a large part of the mining costs, it is very important to optimize the transport fleet from the economic viewpoint. Simulation is one of the most widely used methods in ...
Read More
The production cycle in open-pit mines includes the drilling, blasting, loading, and haulage. Since loading and haulage account for a large part of the mining costs, it is very important to optimize the transport fleet from the economic viewpoint. Simulation is one of the most widely used methods in the field of fleet design. However, it is unable to propose an optimized scenario for which the appropriate metaheuristic method should be employed. This paper considers the Sungun copper mine as the case study, and attempts to find the most feasible transportation arrangement. In the first step, in this work, we compare the flexible dispatching with the fixed allocation methods using the Arena software. Accordingly, the use of flexible dispatching reveals the increase in the production rate (20%) and productivity (25%), and the decrease (20%) in the idle time. The firefly metaheuristic algorithm used in the second step shows that the combined scenario of the 35-ton and 100-ton trucks is the most suitable option in terms of productivity and cost. In another attempt, comparing different heterogeneous truck fleets, we have found that the scenarios 35-100 and 35-60-100-144 increase the production rate by 39% and 49%, respectively. Also, in both scenarios, the production cost decreases by 11% and 21%, respectively.
M. Shenavar; M. Ataee-pour; M. Rahmanpour
Abstract
Production scheduling in underground mines is still a manual process, and achieving a truly optimal result through manual scheduling is impossible due to the complexity of the scheduling problems. Among the underground mining methods, sub-level caving is a common mining method with a high production ...
Read More
Production scheduling in underground mines is still a manual process, and achieving a truly optimal result through manual scheduling is impossible due to the complexity of the scheduling problems. Among the underground mining methods, sub-level caving is a common mining method with a high production rate for hard rock mining. There are limited studies about long-term production scheduling in the sub-level caving method. In this work, for sub-level caving production scheduling optimization, a new mathematical model with the objective of net present value (NPV) maximization is developed. The general technical and operational constraints of the sub-level caving method such as opening and developments, production capacity, sub-level mining geometry, and ore access are considered in this model. Prior to the application of the scheduling model, the block model is processed to remove the unnecessary blocks. For this purpose, the floating stope algorithm is applied in order to determine the ultimate mine boundary and reduce the number of blocks that consequently reduces the running time of the model. The model is applied to a bauxite mine block model and the maximum NPV is determined, and then the mine development network is designed based on the optimal schedule.
T. Ramezanalizadeh; M. Monjezi; A. R. Sayadi; A. Mousavinogholi
Abstract
Waste rock dumping is very important in the production planning of open-pit mines. This subject is more crucial when there is a potential of acid-forming (PAF) by waste rocks. In such a type of mines, to protect the environment, the PAF materials should be encapsulated by non-harmful rocks. Therefore, ...
Read More
Waste rock dumping is very important in the production planning of open-pit mines. This subject is more crucial when there is a potential of acid-forming (PAF) by waste rocks. In such a type of mines, to protect the environment, the PAF materials should be encapsulated by non-harmful rocks. Therefore, block sequencing of the mined materials should be in such a way that both the environmental and economic considerations are considered. If non-acid forming (NAF) rocks are not mined in a proper time, then a stockpile is required for the NAF materials, which later on would be re-handled for encapsulation of PAF rocks. In the available models, the focus is on either block sequencing or waste dumping strategy. In this work, an attempt has been made to develop an integrated mathematical model for simultaneous optimization of block sequencing and waste rock dumping. The developed model not only maximizes the net present value (NPV) but also decreases the destructive environmental effects of inappropriate waste dumping. The proposed model, which is solved by a CPLEX engine, is applied to two different iron deposits. Also the performance of the proposed model is cross-checked by applying the available (traditional) models in a two-step manner. According to the results obtained, it can be considered that utilizing the developed model, because of extensive re-handling cost reduction, the NPV improvement is significant, especially when the overall stripping ratio is higher (deposit case A).
Mine Economic and Management
K. Shah; S. Ur Rehman
Abstract
Truck and shovel are the most common raw material transportation system used in the cement quarry operations. One of the major challenges associated with the cement quarry operations is the efficient allocation of truck and shovel to the mining faces. In order to minimize the truck and shovel operating ...
Read More
Truck and shovel are the most common raw material transportation system used in the cement quarry operations. One of the major challenges associated with the cement quarry operations is the efficient allocation of truck and shovel to the mining faces. In order to minimize the truck and shovel operating cost, subject to quantity and quality constraints, the mixed integer linear programing (MILP) model for truck and shovel allocation to mining faces for cement quarry is presented. This model is implemented using the optimization IDE tool GUSEK (GLPK under SciTE Extended Kit) and the GLPK (GNU Linear Programming Kit) standalone solver. The MILP model is applied to an existing cement quarry operation, the Kohat cement quarry located at Kohat (Pakistan) as a case study. The analysis of the results of the relating case study reveals that significant gains are achievable through employing the MILP model. The results obtained not only show a significant cost reduction but also help in achieving a better coordination among the quarry and quality department.
Exploration
V. Adjiski; D. Mirakovski; Z. Despodov; S. Mijalkovski
Abstract
Auxiliary ventilation of the blind development heading in underground mines is one of the most challenging work activities amongst mining underground operations. The auxiliary forcing ventilation system provides positive pressure, cooling, controlling gas layering, and removing diesel fumes and dust ...
Read More
Auxiliary ventilation of the blind development heading in underground mines is one of the most challenging work activities amongst mining underground operations. The auxiliary forcing ventilation system provides positive pressure, cooling, controlling gas layering, and removing diesel fumes and dust levels from development headings, stopes, and services facilities. The effectiveness of the auxiliary forcing ventilation system depends upon many system variables. Currently, no scientific models and calculations are available that can be used to estimate the optimal distance from the outlet of the auxiliary forcing ventilation system to the development heading in underground mines that can provide the most efficient ventilation close to the face of the heading. In this work, scenarios are developed and simulated with a validated CFD model inside the ANSYS Fluent software. In each scenario, the system parameters such as dead zone, mean age of air, and face velocity are calculated, which are later used in the optimization process. By examining these parameters at the development heading zone, we can quantify the effectiveness of the ventilation system and confirm that the system design meets the government regulations. This work is carried out using the k-epsilon realizable turbulent model inside the ANSYS Fluent software.
Exploitation
H. Bakhshandeh Amnieh; M. Hakimiyan Bidgoli; H. Mokhtari; A. Aghajani Bazzazi
Abstract
Estimating the costs of blasting operations is an important parameter in open-pit mining. Blasting and rock fragmentation depend on two groups of variables. The first group consists of mass properties, which are uncontrollable, and the second one is the drill-and-blast design parameters, which can be ...
Read More
Estimating the costs of blasting operations is an important parameter in open-pit mining. Blasting and rock fragmentation depend on two groups of variables. The first group consists of mass properties, which are uncontrollable, and the second one is the drill-and-blast design parameters, which can be controlled and optimized. The design parameters include burden, spacing, hole length, hole diameter, sub-drilling, charge weight, charge length, stemming length, and charge density. Blasting costs vary depending on the size of these parameters. Moreover, blasting brings about some undesirable results such as air overpressure, fly rock, back-break, and ground vibration. This paper proposes a mathematical model for estimating the costs of blasting operations in the Baghak gypsum mine. The cost of blasting operations in the objective function is divided into three parts: drilling costs, costs of blasting system, and costs of blasting labours. The decision variables used to minimize the costs include burden, spacing, hole diameter, stemming length, charge density, and charge weight. Constraints of the model include the boundary and operational limitations. Air overpressure in the mine is also anticipated as one of the model constraints. The non-linear model obtained with consideration of constraints is optimized by simulated annealing (SA). After optimizing the model by SA, the best values for the decision variables are determined. The value obtained for the cost was obtained to be equal to 2259 $ per 7700 tons for the desired block, which is less than the blasting costs in the Baghak gypsum mine.
A. Hasanzadeh_Sablouei; Seyed M. Moosavirad
Abstract
The electrocoagulation/flotation process is a novel approach in mining industry that is implemented to return Cu metal to the production cycle, which improves copper recovery and reduces waste water. In this research work, the response surface methodology was applied to optimize the factors effective ...
Read More
The electrocoagulation/flotation process is a novel approach in mining industry that is implemented to return Cu metal to the production cycle, which improves copper recovery and reduces waste water. In this research work, the response surface methodology was applied to optimize the factors effective in Cu metal recovery and sludge volume produced from thickener overflow. To this end, the D-optimal experimental design was utilized. The influences of four independent parameters including the electrolysis time, initial pH, current density, and electrodes type were studied to investigate the initial Cu grade percentage (28%) and sludge volume produced from thickener overflow. All these parameters were found to have important effects on the Cu metal recovery and the sludge volume produced. The linear and quadratic models were utilized for the Cu grade and sludge volume, respectively. The importance of the independent variables and the interaction between them was assessed by ANOVA. The optimum operating conditions with 27.22% Cu grade were taken to be: electrolysis time: 6.5 min, initial pH: 6.7, current density: 50.2 A/m2, and electrode type: Fe-Al. Similarly, for the produced sludge volume of 861 cm3, the following conditions were found: electrolysis time: 15 min, initial pH: 4.1, current density: 48.7, and electrode type: Fe-Al. The outcomes underscored a practical viewpoint of electrocoagulation, known as an acceptable method for Cu recovery from mine industrials, especially in mineral processing plants.
Exploitation
A. Mozafari; A. H. Bangian Tabrizi; M. Taji; A. Parhizkar
Abstract
In this paper, we present an integrated model to find the optimum size of blast block that uses (i) a multi-criteria decision-making method to specify the applicable size of the mineable block; (ii) a linear programming method for the selection of the blasted areas to be excavated and in deciding the ...
Read More
In this paper, we present an integrated model to find the optimum size of blast block that uses (i) a multi-criteria decision-making method to specify the applicable size of the mineable block; (ii) a linear programming method for the selection of the blasted areas to be excavated and in deciding the quantity of ores and wastes to be mined from each one of the selected blocks. These two methods use improved estimates of the orebody characteristics utilizing the blast hole data in addition to the usual borehole statistics to improve the prediction accuracy of the block level ore body characteristics. This work aims to make a mathematical model to figure out the ideal width and length of the blast block in order to curtail drilling and blasting expenses in open-pit mines. As a consequence, the effective blast block size is heeded so as to decrease the expenses of drilling and blasting. Furthermore, a complete set of actual principles is presented to specify the applicable size of the mineable block by means of the multi-criteria decision-making method of fuzzy logic. The aforementioned model is practiced to forecast the block size necessary for the purpose of production planning. Next, a mixed integer programming model is developed to blast planning in order to select the optimal size of the blast block by considering the mineable block. The proposed model is applied in the Chadormalu iron ore mine and the rationality of the model is demonstrated by the outcomes of dissimilar circumstances.
Mineral Processing
M. R. Khani; M. Karamoozian
Abstract
In the present work, we investigated and optimized the digestion efficiency, A/S (Al2O3/SiO2 in red mud), and N/S (Na2O/SiO2 in red mud) of mixed bauxite in Iran Alumina Company using the Bayer process. Digestion experiments were carried out in an induction rotary autoclave on a mix of Jajarm, Yazd, ...
Read More
In the present work, we investigated and optimized the digestion efficiency, A/S (Al2O3/SiO2 in red mud), and N/S (Na2O/SiO2 in red mud) of mixed bauxite in Iran Alumina Company using the Bayer process. Digestion experiments were carried out in an induction rotary autoclave on a mix of Jajarm, Yazd, Tash, and Shirin Cheshmeh bauxites. A 4-factor 3-level response surface methodology was applied for the design and analysis of the experiment with the optimization of Na2O concentration, digestion temperature, residence time, and amount of lime addition. Towquadratics and one linear model were derived for the prediction of digestion efficiency, and A/S and N/S responses. The results obtained showed that the optimum amounts for Na2O concentration, temperature, amount of lime addition and residence time were 180 g/L, 275°C, 7.73%, and 50 minutes, respectively, in which the digestion efficiency, A/S, and N/S reached 72.05%, 1.169, and 0.27, respectively. Validation experiment showed that the digestion efficiency, A/S, and N/S were 72.24%, 1.162, and 0.28% respectively, which meant a 2% increase in digestion efficiency and a 0.09 and 0.02 decrease in A/S and N/S, respectively, compared to the current operating condition.
Mineral Processing
D. Ghoddocy Nejad; M. Taghizadeh; A. R. Khanchi
Abstract
In this work, thealkaline roasting and sulfuric acid leaching processes were employed to extract vanadium from the magnetite ore of Saghand mine in central Iran. The response surface methodology based on the central composite design model was applied to optimize the parameters involved in the processes. ...
Read More
In this work, thealkaline roasting and sulfuric acid leaching processes were employed to extract vanadium from the magnetite ore of Saghand mine in central Iran. The response surface methodology based on the central composite design model was applied to optimize the parameters involved in the processes. The studied roasting parameters were temperature (900-1100 °C), sodium carbonate percentage (30-50 wt%), and time (1-3 h). In addition, the studied leaching factors included temperature (70-90 °C), liquid-to-solid ratio (L/S) (5-20 mL/g), sulfuric acid concentration (2-6 M), and time (3-6 h). Under the optimal conditions, the values for temperature, time, and sodium carbonate amounted to 1010 °C, 2.1 h, and 41 wt%, respectively, for the roasting process, while the values for temperature, L/S, sulfuric acid concentration, and time for the leaching process were estimated to be 85 °C, 12.4 mL/g, 4.25 M, and 4.7 h, respectively. Under these conditions, about 83.8 ± 0.9% of vanadium was leached from the magnetite ore.
Mineral Processing
S. Shahraki; M. Karamoozian; A. Azizi
Abstract
Sulfur is one of the most significant impurities in coal, which reduces the quality of coal and also results in environmental pollution. This work was aimed to investigate the removal of sulfur from coal by the leaching method employing parameters expected to affect the removal rate such as acid concentration ...
Read More
Sulfur is one of the most significant impurities in coal, which reduces the quality of coal and also results in environmental pollution. This work was aimed to investigate the removal of sulfur from coal by the leaching method employing parameters expected to affect the removal rate such as acid concentration (10-30%), temperature (40-80 °C), and reaction time (40-100 min). A response surface methodology using Box-Behnken design was employed to maximize, model, and evaluate the factors affecting the desulfurization process. The results obtained indicated that the desulfurization value increased with increase in the acid concentration, temperature, and reaction time. A quadratic model with a high correlation coefficient (R2=0.98) is proposed and developed for the relationship between the removal value and the influential factors. The modeling results demonstrated that the significance degree of factors was in the order of acid concentration>temperature>reaction time. It was also found that the maximum desulfurization (about 87%) could be obtained under the optimal conditions of acid concentration=25%, temperature=80 °C, and leaching time=84 minutes.
Mineral Processing
M. Naderi; Seyed Z. Shafaie; M. Karamoozian; Sh. Gharanjik
Abstract
In this work, the parameters affecting the recovery of copper from the low-grade sulfide minerals of Sarcheshmeh Copper Mine were studied. A low-grade sulfide ore was used with a copper grade of 0.25%, which was about 28% of the mineral oxide, and the sulfide minerals made up the rest. Much more sulfide ...
Read More
In this work, the parameters affecting the recovery of copper from the low-grade sulfide minerals of Sarcheshmeh Copper Mine were studied. A low-grade sulfide ore was used with a copper grade of 0.25%, which was about 28% of the mineral oxide, and the sulfide minerals made up the rest. Much more sulfide minerals were found to be pyrite and most of the gangue minerals were quartz, anorthite, biotite, and muscovite. In order to investigate, simultaneously, the solids (10 to 20%) and acidity (1.5 to 2.5) and shaking (110 to 150 rpm), the separation of bacteria from Sarcheshmeh Copper Mine was carried out. After adjustment of the sample, bio-leaching tests were performed in accordance with the pattern defined by the software DX7 in shaking flasks, and the Cu recovery was modeled and optimized using the response surface methodology. The influential parameters were comprehensively studied. The central composite design methodology was used as the design matrix to predict the optimal level of these parameters. Then the model equation was optimized. The results obtained showed that increasing solids (from 10 to 20%) was bad for bacteria. The highest copper recovery was equivalent to 69.91%, obtained after 21 days at 35 degrees using the Acidi Thiobacillus Ferrooxidans bacteria and a K9 medium with a pulp density of 10% and pH 1.5.
R. Vahedi; B. Tokhmechi; M. Koneshloo
Abstract
We use a multi-resolution analysis based on a wavelet transform to upscale a 3D fractured reservoir. This paper describes a 3D, single-phase, and black-oil geological model (GM) that is used to simulate naturally-fractured reservoirs. The absolute permeability and porosity of GM is upscaled by all the ...
Read More
We use a multi-resolution analysis based on a wavelet transform to upscale a 3D fractured reservoir. This paper describes a 3D, single-phase, and black-oil geological model (GM) that is used to simulate naturally-fractured reservoirs. The absolute permeability and porosity of GM is upscaled by all the possible combinations of Haar, Bior1.3, and Db4 wavelets in three levels of coarsening. The applied upscaling method creates a non-uniform computational grid, which preserves its resolved structure in the near-well zones as well as in the high-permeability sectors but the data are scaled up in the other regions. To demonstrate the accuracy and efficiency of the method, the values for the oil production rate, mean reservoir pressure, water cut, and total amount of water production are studied, and their mean error is estimated for the upscaled models. Finally, the optimized model is selected based on the computation time and accuracy value.
S. Mohammadi; M. Ataei; R. Khalokakaei; E. Pourzamani
Abstract
Optimization of the exploitation operation is one of the most important issues facing the mining engineers. Since several technical and economic parameters depend on the cut-off grade, optimization of this parameter is of particular importance. The aim of this optimization is to maximize the net present ...
Read More
Optimization of the exploitation operation is one of the most important issues facing the mining engineers. Since several technical and economic parameters depend on the cut-off grade, optimization of this parameter is of particular importance. The aim of this optimization is to maximize the net present value (NPV). Since the objective function of this problem is non-linear, three methods can be used to solve it: analytical, numerical, and meta-heuristic. In this study, the Golden Section Search (GSS) method and the Imperialist Competitive Algorithm (ICA) are used to optimize the cut-off grade in mine No. 1 of the Golgohar iron mine. Then the results obtained are compared. Consecuently, the optimum cut-off grades using both methods are calculated between 40.5% to 47.5%. The NPVs obtained using the GSS method and ICA were 18487 and 18142 billion Rials, respectively. Thus the value for GSS was higher. The annual number of iterations in the GSS method was equal to 18, and that for ICA was less than 18. Also computing and programming the process of golden section search method were easier than those for ICA. Therefore, the GSS method studied in this work is of a higher priority.
soghra salehi; M. Noaparast; S.Z. Shafaei; A. Amini; A. Heidarnia
Abstract
In this work, hydrochloric acid is used to remove iron impurities in the bauxite ore contained in the diasporite mineral located in the Sari region. The bauxite ore was calcined at different temperatures and times, and then dissolved in a hydrochloric acid solution. After determining the optimum calcination ...
Read More
In this work, hydrochloric acid is used to remove iron impurities in the bauxite ore contained in the diasporite mineral located in the Sari region. The bauxite ore was calcined at different temperatures and times, and then dissolved in a hydrochloric acid solution. After determining the optimum calcination conditions in 1 h at 900 °C, the response surface methodology (RSM) with four factors in five levels was employed in order to evaluate the effects of calcination temperature, calcination time, acid concentration, and leaching time on the iron leaching efficiency. A quadratic model is proposed using this methodology to correlate the leaching variables. The test results indicate that the model is consistent with the experimental data, and that the most important varriables involved are the acid concentration, leaching time, and squared term of calcination temperature (A2). The maximum iron recovery was 94.97%, and the Fe grade in the solids remained was 2.35% at the calcination temperature of 900 °C, a calcination time of 1 hour, and a leaching time of 2 h in hydrochloric acid (6 mM).
Bahman Ghobadi; Mohammad Noaparast; Seid Ziaedin Shafaei; Majid Unesi
Abstract
This study investigates the optimization of gold dissolution from Aghdarre ore. Therefore, a laboratory investigation was initiated, to improve the leaching conditions with the objective of maximizing mill capacity with no reduction on gold recovery. It was observed that the time reduction from 25 to ...
Read More
This study investigates the optimization of gold dissolution from Aghdarre ore. Therefore, a laboratory investigation was initiated, to improve the leaching conditions with the objective of maximizing mill capacity with no reduction on gold recovery. It was observed that the time reduction from 25 to 15 hours did not change the gold recovery. In the other words, it indicated that a capacity of 140t/h can be sustained without detrimental effect on gold recovery. The optimum parameters were 700g/t NaCN, 46% solid in pulp, pH=10, and d80=45 microns using the Taguchi method. So, the gold recovery was obtained 90.71%. Also, it was concluded that the NaCN concentration was the most effective parameter and the solid percent plus retention time had the lowest effects on this process.