Environment
Ayodele Owolabi; Olumuyiwa Temidayo Ogunro; Gbenga Stephen Ayode
Abstract
Sustainable development is one that meets the needs of the current generation without compromising the ability of future generations to meet their own needs. The geospatial approach was used to evaluate the degree of sustainability of the mining operations in Okpella, Nigeria. 2011, 2016, and 2021. Normalized ...
Read More
Sustainable development is one that meets the needs of the current generation without compromising the ability of future generations to meet their own needs. The geospatial approach was used to evaluate the degree of sustainability of the mining operations in Okpella, Nigeria. 2011, 2016, and 2021. Normalized Difference Vegetation Index (NDVI) revealed mean values of 0.36557, 0.32961, and 0.41674, respectively. This vegetation cover of shrubs, grassland, and relatively healthy vegetation remained after the mining activities in the research area. The surface water in the area is under stress due to the anthropogenic activities like mining, which is known to demand large amounts of water for mineral recovery and processing. Additionally, the Normalized Difference Moisture Index (NDMI) revealed that the mean values for the years 2011, 2016, and 2021 were, respectively, 0.01415, -0.32949, and -0.15331. The research area's NDMI showed little water stress. The Soil Moisture Index (SMI) for 2011, 2016, and 2021 indicated a moderate moisture content in the soil (0.73682, 0.58690, and 0.58897, respectively). The Land Surface Temperature (LST) data revealed that the LST levels (from 28.623 oC to 32.525 oC) had been rising. During the three years under study, aquatic bodies had the lowest LST values, whereas bare land and populated regions had the greatest LST values. According to the results of the NDVI, NDMI, and MNDWI investigations, this increase was caused by the intermediate vegetation levels and extremely low surface water. It is necessary to develop an environmental policy to mitigate the negative consequences of mining on land covers.
Environment
Aditi Nag; Anurag Singh Rathore
Abstract
The tourism industry is experiencing a profound transformation driven by digital innovations such as virtual reality (VR), augmented reality (AR), and interactive platforms. This paper explores how these technologies are reshaping destination competitiveness, with a specific focus on the mining heritage ...
Read More
The tourism industry is experiencing a profound transformation driven by digital innovations such as virtual reality (VR), augmented reality (AR), and interactive platforms. This paper explores how these technologies are reshaping destination competitiveness, with a specific focus on the mining heritage sites (MHSs). By leveraging VR and AR, heritage sites can offer immersive and interactive experiences that enhance visitor engagement, and broaden their reach. Through a case-study analysis, this work examines successful implementations of digital tourism initiatives at various MHSs including the Big Pit National Coal Museum, the Mining Museum of Slovenia, the Mining Museum of the West, the Erzgebirge Mining Region, and the Mesabi Iron Ore Mines. The findings reveal that digital tools significantly improve accessibility, educational value, and global appeal of these sites. However, challenges such as the technical and financial constraints remain. The paper concludes with recommendations for practitioners on integrating digital technologies effectively and suggestions for future research to explore long-term impacts and emerging trends. This work underscores the transformative potential of digital innovation in enhancing the competitiveness and sustainability of tourism destinations.
Environment
Salil Seth; Mrinal Kanti Mahato; Mohd Irfan Pathan; Lokesh Tomar; Parveen Yadav
Abstract
This paper explores the role of eco-centric financing in promoting sustainable development and addressing environmental challenges in mine cities. Through qualitative analysis of the case studies from the Pilbara region in Australia, the Visakhapatnam-Chennai Industrial Corridor in India, and the Kapan ...
Read More
This paper explores the role of eco-centric financing in promoting sustainable development and addressing environmental challenges in mine cities. Through qualitative analysis of the case studies from the Pilbara region in Australia, the Visakhapatnam-Chennai Industrial Corridor in India, and the Kapan Mining Complex in Armenia, the work highlights the multifaceted nature of eco-centric financing, and its implications for various stakeholders, including local governments, mining companies, and communities. The findings reveal that eco-centric financing is essential for enhancing climate resilience, fostering sustainable mining practices, and generating socio-economic benefits. However, significant barriers hinder its effective implementation including inadequate regulatory frameworks, limited access to financial resources, and social mistrust among stakeholders. The paper identifies key opportunities for improvement such as strengthening policy frameworks, enhancing stakeholder engagement, and integrating technology and innovation into financing initiatives. Ultimately, this study underscores the importance of a holistic and inclusive approach to eco-centric financing, emphasizing the need for collaboration and transparency to ensure equitable and sustainable outcomes in mine cities.
Environment
Daniyal Ghadyani; Amirhossein Badraddini; Mohammad Mirzehi Kalateh Kazemi; vahab sarfarazi; Hadi Haeri; Jinwei Fu; Sohrab Naser Mostofi; Vahid Khodabandeloo; Mohammad Fatehi Marji
Abstract
Regarding the hazard-prone working conditions in underground mines, synchronous monitoring and alarm system is vital to increase the safety. By analyzing the accidents in underground mines in Iran, it can be deduced that most fatalities are related to gas leakage, objects drop off on the head, and not ...
Read More
Regarding the hazard-prone working conditions in underground mines, synchronous monitoring and alarm system is vital to increase the safety. By analyzing the accidents in underground mines in Iran, it can be deduced that most fatalities are related to gas leakage, objects drop off on the head, and not using helmets by the staff. Therefore, a smart helmet with the capability of measuring harmful gasses (regarding the type of the mine), detection of the existence of the helmet on the head, temperature and humidity measurement, and detection of blow on the head is designed and fabricated to eliminate the present dangers and problems. This system displays the evaluated data on a developed software through wireless data transmission hardware. The data transmission hardware is the primary a link between the intelligent safety helmet and the software. To follow the idea, practical experiments have been performed in Parvadeh four and East Parvadeh of Tabas coal mine to confirm the validity of data transmission that culminated in successful results. The results were altered by the complexity of the design of the underground spaces so that in a straight direction, data transmission was held until 430 meters. However, further progress was not possible due to tunnel limitations. Data transmission was reduced to 190 meters in access horizons with curvatures or tilts. According to present standards, some thresholds are defined for each of the mentioned cases such that alarm protocol is activated by exceeding these thresholds in critical circumstances. Then the helmet user and the software’s operator will be informed of the occurred danger and will settle the problem. The system outlined in this study ensures performance reliability through its alarm package. A key innovation is the in-depth examination of the impact of head injuries, transforming it into other factors by analyzing relevant content and setting boundaries for assessment rather than using specific numbers. Furthermore, the most evident aspect of this design is the enhancement of the managerial approach, which includes an attendance evaluation platform and performance reporting within the system.
Environment
Aditi Nag
Abstract
Using quantitative data from visitor surveys, Environmental Impact Assessments (EIA), and stakeholder perspectives, this paper investigates the growth of sustainable tourism at Dhori Mines, a noteworthy mining heritage site (MHS) in India. The survey reveals that 82% of visitors value a site's heritage ...
Read More
Using quantitative data from visitor surveys, Environmental Impact Assessments (EIA), and stakeholder perspectives, this paper investigates the growth of sustainable tourism at Dhori Mines, a noteworthy mining heritage site (MHS) in India. The survey reveals that 82% of visitors value a site's heritage value and prefer immersive experiences that highlight its cultural and historical significance, highlighting the complex relationship between conservation efforts and visitor engagement. The EIA revealed that 68% of regions experienced moderate to severe environmental degradation, and water contamination increased by 22% since baseline measurements. The findings suggest targeted measures to reduce environmental effects and encourage ethical tourism, emphasizing the importance of inclusive decision-making and collaborative governance in balancing conservation objectives with visitor satisfaction. Developing tailored visitor experiences, implementing sustainable practices based on EIA data, and enhancing community participation are merely some of the important recommendations made in the paper's conclusion. The research provides managers and policymakers with evidence-based recommendations for preserving the environmental sustainability and cultural integrity of MHSs like Dhori Mines, contributing to the growing knowledge on sustainable heritage tourism. Future research prospects include long-term monitoring of environmental impacts, assessing socio-economic outcomes for local communities, and conducting comparative studies across different MHSs.
Environment
Feridon Ghadimi; Amirhossein Solaimani
Abstract
Chogan region is located in the west of the Urmia-Dokhtar volcanic belt and northwest of the Markazi province in Komijan City. Copper mineralization has a vein type with a length of 260 meters and an average thickness of 4 meters. Mineralization was taken in a sheared silica vein. Eighty three samples ...
Read More
Chogan region is located in the west of the Urmia-Dokhtar volcanic belt and northwest of the Markazi province in Komijan City. Copper mineralization has a vein type with a length of 260 meters and an average thickness of 4 meters. Mineralization was taken in a sheared silica vein. Eighty three samples were taken from the surface ground, in the trenches and it determined the concentration of 10 elements such as Fe, Al, Ca, Ba, S, Mn, As, Pb, Zn, and Cu. It was determined, that S, Ba, Mn, Fe, and Cu are secondary elements in the tuffs by the method of factor and cluster analysis. The constituent mineral such as barite and malachite are vein-shaped, but iron oxides such as hematite and goethite in the form of iron gossan. Geochemical, mineralogical, and geophysical (IP/RS) indices were investigated to separate copper oxide and copper sulfide zones. Sulfur and Ba were used in barite and excess S was chosen as sulfide index (Is). Chalcopyrite and metal factor were chosen as separating oxide and sulfide zones. By combining the geochemical and metal factor, it was approximated the apparent sulfide zone depth and confirmed with actual depth in borehole and error was less than 12%.
Environment
Akram Abdolahadi; Seyed Jamal Sheikhzakariaee; Abdollah Yazdi; Seyed Zahed Mousavi
Abstract
The Plio-quaternary sub-volcanic domes are the products of magmatism in the Turkish-Iranian plateau in the collision zone between Eurasia and Arabia. Intermediate-felsic volcanic rocks are found 50 km west of Ardabil. These volcanic domes make a significant part of the Sabalan volcanic, a Plio-quaternary ...
Read More
The Plio-quaternary sub-volcanic domes are the products of magmatism in the Turkish-Iranian plateau in the collision zone between Eurasia and Arabia. Intermediate-felsic volcanic rocks are found 50 km west of Ardabil. These volcanic domes make a significant part of the Sabalan volcanic, a Plio-quaternary stratovolcano in northwest Iran. The igneous rocks (adakitic) include dacite, trachyte, andesite, trachy-andesite, and trachydacite, associated with ignimbrite and pyroclastic equivalents. They mainly comprise phenocrysts and a microcrystalline groundmass of pyroxene, amphibole, and plagioclase, with biotite and titanomagnetite. These rocks are enriched in Light Rare Earth Elements (LRREs) and Large Ion Lithophile Elements (LILEs) and depleted from Heavy Rare Earth Elements (HRREs) and High-Field Strength Elements (HFSEs). In these rocks, the SiO2 content is 56-66 wt%, Na2O is > 3.5 wt%, Al2O3 > 15 wt%, Yb < 0.2 ppm, and Y < 7 ppm, which are typical of high silica adakitic rocks. The initial ratios of the 143Nd/144Nd range from 0.5127 to 0.5129 and the initial ratios of 87Sr/86Sr for the adakites range from 0.7035 to 0.7060, reflecting the heterogeneity of the mantle and different degrees of crystallization. These geological, geochemical, and Sr, and Nd isotopic data indicate that these rocks belong to the post-collisional adakite type, and are derived from low-degree partial melting of a subduction-metasomatized continental lithospheric mantle (eclogite or amphibolite garnet). In the studied area, mineralization related to Plio-quaternary adakitic rocks has not been observed.
Environment
Azadeh Agah; Faramarz Doulati Ardejani
Abstract
This study aimed to develop a model to illustrate the migration of petroleum hydrocarbons that penetrate the underground environment due to leakage from storage tanks located below the surface.The transport model for non-aqueous phase liquids was integrated with contaminant transport models in two dimensions ...
Read More
This study aimed to develop a model to illustrate the migration of petroleum hydrocarbons that penetrate the underground environment due to leakage from storage tanks located below the surface.The transport model for non-aqueous phase liquids was integrated with contaminant transport models in two dimensions to forecast the contamination of groundwater and soil-gas resulting from the migration of light non-aqueous phase liquids on the water surface. The finite volume method was employed to obtain numerical solutions. The findings indicated that evaporation significantly influences the migration of non-aqueous phase liquids. The soluble plume's production and movement were impacted by the geological features of the location and the existence of the free phase plume. Comparing the model predictions and the results from the field studies for the thickness of non-aqueous phase liquids plume over water indicates a good agreement between the results of the two methods with an average error of less than 5%. The maximum thickness of non-aqueous phase liquids plume between 7 and 7.5 meters was obtained at a distance of 2250 meters from the beginning of the investigated profile. Although 36 years have passed since the leakage occurred, a significant amount of the spilled mass still remained in the non-aqueous phase liquids. The prolonged migration of non-aqueous phase liquids over this time period has led to the contamination of groundwater and the accumulation of significant quantities of contaminated soil.
Environment
Hamid Sarkheil; Shahram Alghasi; Ali Sadeghy Nejad
Abstract
Environmental degradation, particularly in marine ecosystems, has become a critical issue, due to industrial activities. Offshore areas are significantly impacted by the deep sea mining operations, leading to pollution and ecological imbalances. The existing environmental risk assessment models often ...
Read More
Environmental degradation, particularly in marine ecosystems, has become a critical issue, due to industrial activities. Offshore areas are significantly impacted by the deep sea mining operations, leading to pollution and ecological imbalances. The existing environmental risk assessment models often fail to integrate the qualitative and quantitative data effectively, highlighting a significant research work gap. This work aims to address this gap by developing a comprehensive framework using the Bayesian Networks (BN), and the NETICA software to evaluate the risks associated with the installation of three-legged deep sea mining structures. The major goals are to systematically identify and prioritize the risks, and to develop effective mitigation strategies. The novelty of this work lies in its innovative use of the Bayesian modeling to combine the expert knowledge with the empirical data, providing a detailed categorization of risks into the low, medium, and high levels. The output parameters focus on the severity, likelihood, and detectability of risks. The results indicate that 40% of the habitat destruction risks are low, 46% fall within the ALARP region, and 14% are high, while the species destruction risks are 31% low, 50% ALARP, and 19% high. These findings guide the targeted mitigation measures to ensure effective protection of the offshore marine environment. Also the work concludes with a set of recommendations aimed at mitigating identified risks, and minimizing the environmental impacts. These include the implementation of advanced monitoring technologies, adoption of best management practices, and enforcement of stricter regulatory frameworks.
Environment
amirhossein karimi; Amin Falamaki; farid soltani; mehdi homaee; nader shariatmadari
Abstract
Mining activities have led to the accumulation of large quantities of mineral tailings containing potentially hazardous metals, contaminating the surrounding soil. This study investigated the effectiveness of electrokinetic remediation combined with washing solvents for the decontamination of zinc and ...
Read More
Mining activities have led to the accumulation of large quantities of mineral tailings containing potentially hazardous metals, contaminating the surrounding soil. This study investigated the effectiveness of electrokinetic remediation combined with washing solvents for the decontamination of zinc and lead from mine tailings. Samples were collected from various locations within the Angouran mine in Zanjan, Iran, and analyzed for total metal concentration using the standard ICP method. Electrokinetic tests were conducted using different washing solutions—hydrochloric acid, nitric acid, acetic acid, and sulfuric acid—each at a concentration of 0.1 M and mixed with soil in a 1:2 solution-to-solid ratio. A voltage of 1.5 V/cm was applied throughout the experiments. To mitigate heavy metal precipitation near the cathode, the same chemical solutions were used in the cathode chamber. The results demonstrated that distilled water resulted in the lowest removal efficiency for zinc (16%) and lead (11.5%), while hydrochloric acid showed the highest removal efficiencies of 64% for zinc and 45% for lead. These findings indicated that electrokinetic remediation, particularly when using hydrochloric acid as a complexing agent, was an effective method for removing significant quantities of zinc and lead from contaminated soil.
Environment
Reyhaneh Khashtabeh; Morteza Akbari; Ava Heidari; Ali Asghar Najafpour; Rokhsareh Khashtabeh
Abstract
The Heavy Metal (HM) contamination in surface soils poses significant environmental and health concerns near the mining operations. This study examined the concentrations and health risks of the five HMs lead (Pb), nickel (Ni), copper (Cu), arsenic (As), and iron (Fe) in soils surrounding the Sangan ...
Read More
The Heavy Metal (HM) contamination in surface soils poses significant environmental and health concerns near the mining operations. This study examined the concentrations and health risks of the five HMs lead (Pb), nickel (Ni), copper (Cu), arsenic (As), and iron (Fe) in soils surrounding the Sangan iron ore mines in eastern Iran. Sixty soil samples were collected at depths of 0-20 cm from sites adjacent to the mining area and one control site. The HM concentrations were compared to the global shale values. Soil contamination was quantified using the geo-accumulation index (Igeo). Health risks to the local residents were assessed using the US Environmental Protection Agency's Human Health Risk Evaluation Index. The analysis revealed that the lead concentrations near the mine exceeded the global shale standards, while the arsenic levels remained marginally below permissible limits established by global soil standards. The Igeo values indicated low to moderate the contamination levels for both Pb and As in the mining-adjacent areas. The risk assessment results showed that non-carcinogenic risk indices were within acceptable limits for both children and adults. However, arsenic posed a significant carcinogenic risk to adults through two exposure pathways: ingestion (3.36E-04) and dermal absorption (1.36E-04). These findings highlight the importance of implementing regular monitoring protocols for potentially hazardous elements in the mining region to prevent and mitigate pollution-related health risks.
Environment
Lateef Bankole Adamolekun; Taiwo Blessing Olamide; Muyideen Alade Saliu; Esma Kahraman; Victor Afolabi Jebutu; Yewuhalashet Fissha; Adams Abiodun Akinlabi
Abstract
Examining the applicability of laterite clay for landfill and other engineering applications is critical due to the daily challenges that practitioners face as a result of material property variation. The suitability of seven selected laterite deposits in southwestern Nigeria as usable liner material ...
Read More
Examining the applicability of laterite clay for landfill and other engineering applications is critical due to the daily challenges that practitioners face as a result of material property variation. The suitability of seven selected laterite deposits in southwestern Nigeria as usable liner material in solid waste landfill construction was investigated in this study, taking geotechnical properties and chemical composition into account. Purposive samples were collected and tested in accordance with ASTM standard procedures for analyzing geotechnical properties. X-ray diffraction analysis was used to determine the soil's clay mineral composition. The clay mineral composition of the soil was determined using X-ray diffraction analysis. The geotechnical analysis revealed the following ranges for the samples: gravel particle size percentage (3.7% to 34.0%), fines particle size percentage (17.4% to 71.7%), liquid limit (28.1% to 65.8%), plasticity index (3.95 to 45.53), activity (0.44 to 0.81), coefficient of permeability (6.75 x10-10 m/s to 5.80 x 10-6 m/s), specific gravity (2.639 to 2.768), and maximum dry density (1462 kg/m3 to 2065 kg/m3). X-ray diffraction test revealed that the clay minerals content in the seven location clay deposit varies depending on location. The study revealed that the clay mineralogical composition affects the suitability of the soil as a landfill liner material. Four among the seven clay deposits considered in this study were found suitable as a liner for solid waste landfills as compared with landfill material standard specifications.
Environment
Asghar Azadehranjbar; Shahrzad khoramnejadian; Saeidreza Asemi Zavareh; Alireza Pendashteh
Abstract
Mining and minerals extraction and purification are critical in today’s world. However, these processes may have negative consequences on the environment. Xanthates which are essential in the floatation process are found to be significant polluting chemicals. In this manuscript, the effect of different ...
Read More
Mining and minerals extraction and purification are critical in today’s world. However, these processes may have negative consequences on the environment. Xanthates which are essential in the floatation process are found to be significant polluting chemicals. In this manuscript, the effect of different parameters on the recovery of lead from Nakhlak lead mine was investigated considering the impact of used chemicals on the surrounding environment including air, soil and native plant species. The reason for this investigation was to achieve the optimal conditions for the minimum consumption of xanthates and other chemicals. The optimal recovery was obtained in the presence of xanthate (1 kg/t) and sodium silicate (0.4 kg/t). In addition, MIBC showed to be more efficient in the floatation process. Furthermore, it was observed that higher xanthate contents are required for the floatation of large particles. Therefore, smaller particles of feed can decrease xanthate consumption. A particle size of 100 µm showed the best floatation recovery with the least xanthate requirement.
Environment
Behnoosh Khataei; Farhad Qaderi; Farzad Mosavat
Abstract
The increase in the number of factories, the industrialization of human life, and the increasing use of industrial paints have caused an increase in dye wastewater and consequent environmental pollution. Discharging wastewater containing the dyes mentioned above, which are often carcinogenic, is a severe ...
Read More
The increase in the number of factories, the industrialization of human life, and the increasing use of industrial paints have caused an increase in dye wastewater and consequent environmental pollution. Discharging wastewater containing the dyes mentioned above, which are often carcinogenic, is a severe threat to living organisms. In this research, a photocatalytic method (as an advanced oxidation method) using zinc oxide nanoparticles was investigated to treat the colored wastewater containing methylene blue. This type of nanoparticle is cheap (based on the used synthesis method), abundant and readily available, and low in toxicity. For this purpose, an evaluation of the optimal ratio between zinc acetate and polyvinylpyrrolidone for the synthesis of zinc oxide nanoparticles was carried out. Furthermore, the simultaneous decreasing and increasing effects of independent parameters (pH, irradiation time, methylene blue concentration, zinc acetate to PVP ratio) on the efficiency of the photocatalytic process and kinetic model were evaluated. The results showed that the best pollutant removal efficiency (91.7%) was obtained using the ratio of zinc acetate and polyvinylpyrrolidone equal to 33.67 in 60 minutes of irradiation time. This result shows that the lower ratio of zinc acetate to polyvinylpyrrolidone indicates higher dye removal.
Environment
Aditi Nag; Smriti Mishra
Abstract
The convergence of Mining Heritage Tourism (MHT) and Artificial Intelligence (AI) presents a transformative paradigm, reshaping heritage preservation, visitor engagement, and sustainable growth. This paper investigates the dynamic synergy between these realms, probing how AI-driven technologies can augment ...
Read More
The convergence of Mining Heritage Tourism (MHT) and Artificial Intelligence (AI) presents a transformative paradigm, reshaping heritage preservation, visitor engagement, and sustainable growth. This paper investigates the dynamic synergy between these realms, probing how AI-driven technologies can augment the authenticity, accessibility, and educational significance of mining heritage sites. Focusing on the profound impact of AI on MHT, this study centers its examination on the Barr Conglomerate located in the culturally rich Pali District, India. Employing a mixed-methods approach involving survey data analysis and neural network modelling, the research work explores AI applications that enhance visitor experiences, interpret historical narratives, optimize resource allocation, and mitigate the adverse effects of over-tourism. The study meticulously navigates a vast landscape of AI technologies, spanning machine learning, natural language processing, and augmented reality, show-casing their potential to enrich encounters with mining heritage. While AI promises to revolutionize heritage management, the paper emphasizes the critical importance of ethical considerations and cultural sensitivities. Balancing innovation with preservation, the study advocates for an inclusive approach that honors diverse cultural values and encourages community engagement. Through this exploration, the paper delves into the practical implementation of AI, unveiling best practices lessons learned and illuminating challenges and opportunities. Ultimately, this research work envisions a future where AI empowers mining heritage to transcend temporal boundaries, cultivating immersive experiences resonating with authenticity, global understanding, and sustainable stewardship.
Environment
Anna Perevoshchikova; Larisa Rudakova; Natalia Mitrakova; Elizaveta Malyshkina; Nikita Kobelev
Abstract
The utilisation of potash reserves has various environmental consequences, such as the generation of substantial volumes of solid waste containing high levels of sodium chloride. The accumulation of environmental harm gives rise to an unfavourable environmental scenario in potash production areas, which ...
Read More
The utilisation of potash reserves has various environmental consequences, such as the generation of substantial volumes of solid waste containing high levels of sodium chloride. The accumulation of environmental harm gives rise to an unfavourable environmental scenario in potash production areas, which requires the investigation of waste management solutions. The predominant approach to reducing surface waste involves backfilling mined areas. In other countries, salt dump reclamation is utilised alongside backfilling. The distinctive characteristic of salt dump reclamation lies in the water-solubility and phytotoxicity of the dump rock. This research aims to evaluate the morphometric and biochemical parameters (using phytotesting) of vegetation throughout the process of salt dump reclamation using different variants. A model reclamation was carried out in a laboratory setting, where three different variants were subjected to experimentation. A reduction in the thickness of the protective clay barrier resulted in a decline in morphometric aspects of the experimental crops as well as the woody vegetation. Reducing the thickness of the protective clay barrier leads to an elevation in the redox activity of the examined crops, thus pointing towards potential environmental toxicity. Superior morphometric and biochemical parameters were noted in vegetation possessing a substantial protective covering, hinting at the feasibility of utilising insulating layers for salt dump reclamation. Phytotesting serves as an indicative approach to assessing soil toxicity and as a parameter for determining soil resilience against pollution. The findings hold potential for application in further research within the field of biological reclamation in areas with dump sites.
Environment
Kushai Caleb Aluwong; Mohd Hazizan bin Mohd Hashim; Suhaina Ishmail
Abstract
In the past, assessing water quality has typically involved labor-intensive and costly processes such as laboratory analysis and manual sampling, which do not provide real-time data. In addition to tasting bad, drinking acidic water on a regular basis can result in acid reflux and recurrent heartburn ...
Read More
In the past, assessing water quality has typically involved labor-intensive and costly processes such as laboratory analysis and manual sampling, which do not provide real-time data. In addition to tasting bad, drinking acidic water on a regular basis can result in acid reflux and recurrent heartburn while high total dissolved solids water can cause kidney stones, especially when the hard water content is more than 500ppm. With growing concerns about water quality, there is a need for continuous monitoring of pH and TDS levels in surface and groundwater sources. To address this, a cutting-edge wireless sensor system leveraging on Internet of Things (IoT) technology has been developed. This system incorporates top-notch pH and TDS sensors known for their accuracy, durability, and environmental compatibility. Integrated with microcontrollers featuring wireless communication capabilities, these sensors enable seamless data transmission to a central server through IoT protocols like cellular networks. The collected data is processed and calibrated to ensure reliability and precision. The IoT platform connected to the central server manages device connectivity, data storage, and analysis, making real-time data accessible via user-friendly web or mobile applications with interactive graphs and dashboards. Power-saving features are implemented to optimize battery life in remote and off-grid locations, and weather-resistant enclosures protect the sensor nodes from harsh environmental conditions. By deploying this wireless-based sensor system, users can gain valuable real-time insights into water quality in surface and groundwater monitoring locations.
Environment
Aditi Nag; Smriti Mishra
Abstract
This review paper delves into the burgeoning cultural phenomenon of dark tourism, specifically exploring its connection with Mining Heritage Towns (MHTs). The paper navigates the intricate interplay between tourism competitiveness and ethical considerations in these sites laden with historical trauma ...
Read More
This review paper delves into the burgeoning cultural phenomenon of dark tourism, specifically exploring its connection with Mining Heritage Towns (MHTs). The paper navigates the intricate interplay between tourism competitiveness and ethical considerations in these sites laden with historical trauma through a meticulous analysis of existing literature, case studies, and ethical frameworks. Dark tourism, characterised by exploring locations associated with tragedy, has emerged as a global trend, prompting a critical examination of its economic, cultural, and ethical dimensions within mining heritage contexts. Drawing on a wide array of sources, this comprehensive review elucidates the challenges confronting managers of heritage sites, shedding light on the complex ethical dilemmas they face. The paper comprehensively analyses the complex relationship between tourism competitiveness and ethical practices. It critically evaluates the impact of dark tourism on MHTs' economic landscape, explores its cultural implications, and delves into the ethical complexities of such visits, enriching academic discourse and offering valuable guidance for practitioners and policy-makers. The study enhances understanding of dark tourism's role in MHTs and advocates for sustainable tourism development, emphasising ethical considerations in shaping the future of these unique and historically significant sites.
Environment
Jitendra Pramanik; Singam Jayanthu; Dr Abhaya Kumar Samal
Abstract
The environmental conditions present in underground (UG) mines working site significantly impacts the productivity, efficiency, effectiveness as well as threatened security levels. Consequently, maintaining safety in mineral excavation process requires continuous monitoring of the intricate and perilous ...
Read More
The environmental conditions present in underground (UG) mines working site significantly impacts the productivity, efficiency, effectiveness as well as threatened security levels. Consequently, maintaining safety in mineral excavation process requires continuous monitoring of the intricate and perilous operating conditions within the mining work site. At this juncture of time, in this information age, when all walks of life is undergoing continuous modernization, with today's workplace being no exception, Internet of Things (IoT) technology is playing a key role in acquiring relevant information to support monitoring vital operational man and machine safety parameters such as temperature, pressure, humidity, luminance and noise levels, and miner's location in subterranean mining operations. This study has attempted to exhaustively explore state of current research on the use of IoT in underground mining applications. This paper examines the utilization of IoT applications for monitoring several environmental parameters, including obnoxious mine gases and dust concentrations, temperature, humidity, groundwater levels, and strata behaviour to facilitate ground support activities. This paper attempts exploitation of possible scopes of IoT integration from the implementation perspective to monitor and control the various aspects that contribute towards various types and incidents of mine accidents. This research elucidates the primary obstacles that impede the widespread implementation of IoT-enabled systems in underground mining applications.
Environment
Podicheti Ravi Kiran; Ramchandar Karra
Abstract
Opencast coal mines play a crucial role in meeting the energy demands of a country. However, the operations will result in deterioration of ambient air quality, particularly due to particulate emissions. The dispersion of particulate matter will vary based on the mining parameters and local meteorological ...
Read More
Opencast coal mines play a crucial role in meeting the energy demands of a country. However, the operations will result in deterioration of ambient air quality, particularly due to particulate emissions. The dispersion of particulate matter will vary based on the mining parameters and local meteorological conditions. There is a need to establish a suitable model for predicting the concentration of particulate matter on a regional basis. Though a number of dispersion models exist for prediction of dust concentration due to opencast mining, machine learning offers several advantages over traditional modeling techniques in terms of data driven insights, non-linearity, flexibility, handling complex interactions, anomaly detection, etc. An attempt has been made to assess the dispersion of particulate matter using machine learning techniques by considering the mining and meteorological parameters. Historical data comprising of mine working parameters, meteorological conditions, and particulate matter pertaining to one of the operating opencast coal mines in southern India has been utilized for the study. The data has been analyzed using different machine learning techniques like bagging, random forest, and decision tree. The performance metrics of test data are compared for different models in order to find the best fit model among the three techniques. It is found that for PM10, many of the times bagging technique gave a better accuracy, and for PM2.5, decision tree technique gave a better accuracy. Integration of mine working parameters with meteorological conditions and historical data of particulate matter in developing the model using machine learning techniques has helped in making more accurate predictions.
Environment
Morteza Niromand; Reza Mikaeil; Mehran Advay; Masoud Zare Naghadehi
Abstract
Slope instability can occur due to external loads such as earthquakes, explosions, and pore pressures. In addition, under natural conditions, slope instability can be caused by factors such as the erosion of some parts of the slope due to water or wind currents and the gradual rise of groundwater levels. ...
Read More
Slope instability can occur due to external loads such as earthquakes, explosions, and pore pressures. In addition, under natural conditions, slope instability can be caused by factors such as the erosion of some parts of the slope due to water or wind currents and the gradual rise of groundwater levels. Another factor leading to slope instability is human activities involving various types of loading and unloading on the slope. The instability of slopes may be associated with limited or large displacements, which either can cause problems or damage structures on the slope. Therefore, this phenomenon needs due care at all slope design and implementation stages. In general, slope stability is influenced by natural factors such as rock type (lithology), tectonic conditions of the area, rock mass joint conditions, and climatic conditions of the area. Furthermore, it is a function of design factors such as dip, height, explosive pattern, and explosion method. The present study offers a multi-factorial fuzzy classification system using the multi-criteria fuzzy approach to evaluate the slope stability. The evaluation is performed in five classes, namely “high stability”, “stable”, “relatively stable”, “unstable”, and “highly unstable”. Next, the viability of 28 slopes of 8 large open-pit mines in different parts of the world was evaluated. According to the fuzzy classification results, 4 and 6 slopes were evaluated in relatively stable and unstable conditions, respectively, with the other slopes classified as stable class. Afterward, the developed fuzzy classification system was assessed based on the actual behavior of the slopes. The results revealed a general large and local failure in most slopes in unstable and relatively stable conditions. Hence, a non-linear multi-factorial fuzzy classification system with good reliability can be used to evaluate the stability of the slopes.
Environment
Ayodele Owolabi; Sunday Olabisi Daramola
Abstract
Nigeria is abundantly blessed with solid mineral resources such as copper, gold, and tantalite, which are essential for the economic growth of the country. The extraction of these mineral resources comes with the generation of huge amount of waste. This study examines the possibility of utilizing some ...
Read More
Nigeria is abundantly blessed with solid mineral resources such as copper, gold, and tantalite, which are essential for the economic growth of the country. The extraction of these mineral resources comes with the generation of huge amount of waste. This study examines the possibility of utilizing some mine wastes from Jos, Nigeria, in embankment construction by subjecting them to relevant laboratory geotechnical experiments. The results indicates that the overburden materials contain clay-sized fraction ranging 5-20%, while the sand fraction ranged 42-82%, which is an indication of the predominance of sand size particles. On the other hand, the clay-sized particles in the tailings range 5-21%, while the sand fractions range 65-80%. The overburden materials recorded liquid limit values ranging 26-48% and plasticity index ranging 6.3-21%, while the liquid limit and plasticity index of the tailings range 23-32.8% and 6.2-11.6%, respectively. The maximum dry density (MDD) and optimum moisture content (OMC) of the overburden materials vary 1.84-1.98 mg/m3 and 1.4-17.2%, respectively, with an average of 1.89 mg/cm3 and 16%. On the other hand, the tailings recorded MDD ranging 1.88-2.06 mg/m3 with their OMC ranging 14.4-16% with an average 14.86%. The soaked California bearing ratio (CBR) of the overburden materials range 27-32%, while that of tailings ranges 25-32%. The geotechnical evaluation of the overburden materials and tailings reveals that most of the materials are suitable for embankment construction. However, the high linear shrinkage of some wastes renders them unsuitable.
Environment
Aditi Nag; Smriti Mishra
Abstract
This study examines the revitalization of mining ghost towns (MGTs) through heritage tourism, focusing on sustainability and heritage preservation. The study highlights the transformative potential of heritage tourism in revitalizing these towns, highlighting the economic resilience achieved through ...
Read More
This study examines the revitalization of mining ghost towns (MGTs) through heritage tourism, focusing on sustainability and heritage preservation. The study highlights the transformative potential of heritage tourism in revitalizing these towns, highlighting the economic resilience achieved through diversified local economies and responsible tourism practices. Cultural preservation ensures the endurance of unique identities and cultural legacies, sparking community pride and cultural exchange. Sustainability measures extend beyond heritage preservation, promoting environmental stewardship and long-term ecological well-being. Community engagement, educational initiatives, and responsible tourism practices are crucial in sustaining the heritage of these towns. The implications extend beyond individual communities, offering a model for responsible and sustainable tourism practices with global relevance. The significance of revitalizing MGTs through heritage tourism lies in preserving history, empowering communities, and creating vibrant, sustainable destinations for generations.
Environment
Gregory Udie Sikakwe; Samuel Adebayo Ojo; Andrew Aondover Tyopine
Abstract
Potentially harmful elements enter into the environment through mining and agricultural activities, causing water and stream sediment pollution. Ecological risk analysis helps to determine sediment pollution, to recommend remediation measures for human health safety and the survival of aquatic ...
Read More
Potentially harmful elements enter into the environment through mining and agricultural activities, causing water and stream sediment pollution. Ecological risk analysis helps to determine sediment pollution, to recommend remediation measures for human health safety and the survival of aquatic species. The sediments were analysed for acidity and redox potential using a pH-meter and spectrophotometer, respectively. Nickel, cadmium, arsenic, chromium, lead, zinc, and iron were measured using atomic absorption spectrophotometer. The mean value of Cd exceeded the threshold effect limit guideline indicating its adverse effect to water dwelling organisms. Anthropogenic metal input identified cadmium, lead, arsenic, zinc and chromium contamination in locations 3, 6, and 7. Modified risk assessment code, toxic response index and comprehensive ecological risk values exhibited considerable to high ecological risks in locations 3, 6, and 7. The highest comprehensive ecological risk value recorded 653.2 in location 3, showing high ecological risk to water dwelling organisms. Durbin Watson ecological risk value (2.34) is between a critical value of 1.5 < d < 2.5 showing auto correlation of the data. Potentially harmful elements obtained Durbin Watson value of 2.77, which exceeded the range showing lack of auto correlation. Strong correlation of arsenic, lead and zinc showed their affinity and common source of enrichment. Principal component analysis indicated that the sources of the elements were mostly geological weathering, sewage disposal, industrial wastes and agricultural fertilizers. The study integrated recent ecological risk indices with multivariate and regression statistics. This is helpful in interpreting related environmental problems by scientists in other parts of the world.
Environment
Masoud Rabieian; Farhad Qaderi
Abstract
Offshore produced water (OPW), a type of wastewater rich in hazardous compounds such as polycyclic aromatic hydrocarbons (PAHs), requires effective treatment. This study presents a novel methodology utilizing TiO2 nanoparticles, ultraviolet (UV) lamps, and ozonation for the degradation of phenanthrene ...
Read More
Offshore produced water (OPW), a type of wastewater rich in hazardous compounds such as polycyclic aromatic hydrocarbons (PAHs), requires effective treatment. This study presents a novel methodology utilizing TiO2 nanoparticles, ultraviolet (UV) lamps, and ozonation for the degradation of phenanthrene (PHE) from OPW. Various factors including UV lamp power (10W-50W), ozone dose (0.1 mg/L-0.5 mg/L), TiO2 concentration (0.5 g/m²-2.1 g/m²), ethanol fraction (25%-85%), pH (4.5-10.5), PHE initial concentration (5 mg/L-25 mg/L), and treatment time (15 min-45 min) were systematically investigated to understand their impact on PAH degradation in the OPW. The study employs Response Surface Methodology (RSM) for modeling and optimizing PHE removal efficiency. The results contribute to the development of a mathematical model, and through optimization, optimal conditions are proposed to maximize PHE removal efficiency. Experimental implementation of the optimized conditions in a physical model resulted in an impressive 98% PHE removal efficiency. The identified optimal conditions include UV lamp power of 40 W, ozone dose of 0.5 mg/L, TiO2 concentration of 2 g/m², ethanol fraction of 25%, pH of 5.2, initial PHE concentration of 15 mg/L, and a treatment time of 40 min. This optimized approach provides valuable insights for efficient and environmentally friendly treatment of PAHs in OPW, emphasizing on the potential for practical application in soil washing effluent treatment.