Environment
Salil Seth; Mrinal Kanti Mahato; Mohd Irfan Pathan; Lokesh Tomar; Parveen Yadav
Abstract
This paper explores the role of eco-centric financing in promoting sustainable development and addressing environmental challenges in mine cities. Through qualitative analysis of the case studies from the Pilbara region in Australia, the Visakhapatnam-Chennai Industrial Corridor in India, and the Kapan ...
Read More
This paper explores the role of eco-centric financing in promoting sustainable development and addressing environmental challenges in mine cities. Through qualitative analysis of the case studies from the Pilbara region in Australia, the Visakhapatnam-Chennai Industrial Corridor in India, and the Kapan Mining Complex in Armenia, the work highlights the multifaceted nature of eco-centric financing, and its implications for various stakeholders, including local governments, mining companies, and communities. The findings reveal that eco-centric financing is essential for enhancing climate resilience, fostering sustainable mining practices, and generating socio-economic benefits. However, significant barriers hinder its effective implementation including inadequate regulatory frameworks, limited access to financial resources, and social mistrust among stakeholders. The paper identifies key opportunities for improvement such as strengthening policy frameworks, enhancing stakeholder engagement, and integrating technology and innovation into financing initiatives. Ultimately, this study underscores the importance of a holistic and inclusive approach to eco-centric financing, emphasizing the need for collaboration and transparency to ensure equitable and sustainable outcomes in mine cities.
M. Eftekhari; A. Baghbanan; H. Hashemolhosseini
Abstract
The cracked Brazilian disc (CBD) specimen is widely used in order to determine mode-I/II and mixed-mode fracture toughness of a rock medium. In this study, the stress intensity factor (SIF) on the crack-tip in this specimen is calculated for various geometrical crack conditions using the extended-finite ...
Read More
The cracked Brazilian disc (CBD) specimen is widely used in order to determine mode-I/II and mixed-mode fracture toughness of a rock medium. In this study, the stress intensity factor (SIF) on the crack-tip in this specimen is calculated for various geometrical crack conditions using the extended-finite element method (X-FEM). This method is based upon the finite element method (FEM). In this method, the crack is modeled independently from the mesh. The results obtained show that the dimensionless SIFs for the pure modes I and II increase with increase in the crack length but the angle in which pure mode-II occurs decreases. For the mixed-mode loading, with increase in the crack angle, NI value decreases, while NII value increases to a maximum value and then decreases. The results obtained from the crack propagation examinations show that the crack angle has an important effect on the crack initiation angle. The crack initiation angle increases with increase in the crack angle. When the crack angle is zero, then the crack is propagated along its initial direction, whereas in the mixed-mode cases, the crack deviates from the initial direction, and propagates in a direction (approximately) parallel to the direction of maximum compressive load.
F. Razavi Rad; F. Mohammad Torab; A. Abdollahzadeh
Abstract
Considering the importance of Cd and U as pollutants of the environment, this study aims to predict the concentrations of these elements in a stream sediment from the Eshtehard region in Iran by means of a developed artificial neural network (ANN) model. The forward selection (FS) method is used to select ...
Read More
Considering the importance of Cd and U as pollutants of the environment, this study aims to predict the concentrations of these elements in a stream sediment from the Eshtehard region in Iran by means of a developed artificial neural network (ANN) model. The forward selection (FS) method is used to select the input variables and develop hybrid models by ANN. From 45 input candidates, 13 and 14 variables are selected using the FS method for Cadmium and Uranium, respectively. Considering the correlation coefficient (R2) values, both the ANN and FS-ANN models are acceptable for estimation of the Cd and U concentrations. However, the FS-ANN model is superior because the R2 values for estimation of Cd and U by the FS-AAN model is higher than those for estimation of these elements by the ANN model. It is also shown that the FS-ANN model is preferred in estimating the Cd and U population due to reduction in the calculation time as a consequence of having less input variables.
Rock Mechanics
A. Akrami; M. Hosseini; H. Sodeifi
Abstract
Hydraulic fracturing is used in the oil industry in order to increase the index of production and processing in the wells whose efficiencies have been dropped due to a long-term harvest or the rocks around the wells are of low permeability. Since the hydraulic fracturing operation is costly, it is of ...
Read More
Hydraulic fracturing is used in the oil industry in order to increase the index of production and processing in the wells whose efficiencies have been dropped due to a long-term harvest or the rocks around the wells are of low permeability. Since the hydraulic fracturing operation is costly, it is of special importance to the project managers to determine the pressure required for hydraulic fracturing and the suitable pump for this operation. The numerical modelings used in this work are aimed to investigate the fracture pressure in the carbonate rocks of Bangestan reservoir in Ahvaz, Iran, and to determine a relationship between the pressure required for fracturing and the confining pressure. In this work, unlike the other ones in this field, the developed numerical models had no initial crack or fracture, and the path of the crack and how the crack grows were studied without any pre-determination and presumption. The results obtained show that, in most cases, the crack starts from the central part of the sample, and is extended to its two ends. The crack extension direction was along the borehole axis inside the sample and perpendicular to the lateral stress. The numerical modeling results were well-consistent with the experimental ones, indicating that the pump capacity constraints in the laboratory could be overcome through numerical modelings.
Rock Mechanics
M. Lak; M. Fatehi Marji; A.R. Yarahamdi Bafghi; A. Abdollahipour
Abstract
The explosion process of explosives in a borehole applies a very high pressure on its surrounding rock media. This process can initiate and propagate rock fractures, and finally, may result in the rock fragmentation. Rock fragmentation is mainly caused by the propagation of inherent pre-existing fractures ...
Read More
The explosion process of explosives in a borehole applies a very high pressure on its surrounding rock media. This process can initiate and propagate rock fractures, and finally, may result in the rock fragmentation. Rock fragmentation is mainly caused by the propagation of inherent pre-existing fractures of the rock mass and also from the extension of the newly formed cracks within the intact rock due to the explosion. In this work, the process of extension of blast-induced fractures in rock masses is simulated using the discrete element method. It should be noted that, in this work, fracture propagation from both the rock mass inherent fractures and newly induced cracks are considered. The rock mass inherent fractures are generated using the discrete fracture network technique. In order to provide the possibility of fracture extension in the intact rock blocks, they are divided into secondary blocks using the Voronoi tessellation technique. When the modeling is completed, the fracture extension processes in the radial and longitudinal sections of a borehole are specified. Then a blast hole in an assumed rock slope is modeled and the effect of pre-splitting at the back of the blast hole (controlled blasting) on the fracture extension process in the blast area is investigated as an application of the proposed approach. The modeling results obtained show that the deployed procedure is capable of modeling the explosion process and different fracture propagations and fragmentation processes in the rock masses such as controlled blasting.
F. Hadadi; B. Jodeiri Shokri; M. Zare Naghadehi; F. Doulati Ardejani
Abstract
In this paper, we investigate a probabilistic approach in order to predict how acid mine drainage is generated within coal waste particles in NE Iran. For this, a database is built based on the previous studies that have investigated the pyrite oxidation process within the oldest abandoned pile during ...
Read More
In this paper, we investigate a probabilistic approach in order to predict how acid mine drainage is generated within coal waste particles in NE Iran. For this, a database is built based on the previous studies that have investigated the pyrite oxidation process within the oldest abandoned pile during the last decade. According to the available data, the remaining pyrite fraction is considered as the output data, while the depth of the waste, concentration of bicarbonate, and oxygen fraction are the input parameters. Then the best probability distribution functions are determined on each one of the input parameters based on a Monte Carlo simulation. Also the best relationships between the input data and the output data are presented regarding the statistical regression analyses. Afterward, the best probability distribution functions of the input parameters are inserted into the linear statistical relationships to find the probability distribution function of the output data. The results obtained reveal that the values of the remaining pyrite fraction are between 0.764% and 1.811% at a probability level of 90%. Moreover, the sensitivity analysis carried out by applying the tornado diagram shows that the pile depth has, by far, the most critical factors affecting the pyrite remaining
M. Esmailzadeh; A. Imamalipour; F. Aliyari
Abstract
The main aim of mineral exploration is to discover the ore deposits. The mineral prospectivity mapping (MPM) methods by employing multi-criteria decision-making (MCDM) integrate the exploration layers. This research work combines the geological, alteration, and geochemical data in order to generate ...
Read More
The main aim of mineral exploration is to discover the ore deposits. The mineral prospectivity mapping (MPM) methods by employing multi-criteria decision-making (MCDM) integrate the exploration layers. This research work combines the geological, alteration, and geochemical data in order to generate MPM in the Kighal-Bourmolk Cu-Mo porphyry deposit. The overlaying of rock units and fault layers was used to prepare the geological layer. The remote sensing and geological studies were employed in order to create an alteration layer. For generating the geo-chemistry layer, the stream sediment and lithogeochemical data were utilized. The lithogeochemistry layer was categorized into 9 ones including Cu, Mo, Bi, Te, the alteration indices (e.g. potassic, phyllic, and propylitic), and the geochemical zonality indices (e.g. Vz1 and Vz2). In addition, the stream sediment layer was categorized into 6 layers including Cu, Mo, Bi, Te, and the geochemical zonality indices (e.g. Vz1 and Vz2). By examination of the created layers, the consistency of the potential areas was verified by field surveys. Afterward, the weights were assigned to each layer considering the conceptual model of porphyry copper systems. Consequently, the layers were integrated by the fuzzy gamma operator technique, and the final MPM was generated. Regarding the generated MPM, 0.86% of the studied area shows a high potential porphyry mineralization, and these areas are proposed for the subsequent exploration drilling locations.
Vanshika Bhardwaj; Kanwarpreet Singh
Abstract
Natural hazards are naturally occurring phenomena that might lead to a negative impact on the environment and also on the life of living beings. These hazards are caused due to adverse conditions of weather and climate events, and also due to certain human activities that are harmful to the environment. ...
Read More
Natural hazards are naturally occurring phenomena that might lead to a negative impact on the environment and also on the life of living beings. These hazards are caused due to adverse conditions of weather and climate events, and also due to certain human activities that are harmful to the environment. Natural hazards include tsunamis, earthquakes, volcanic activity, landslides, etc. Among these natural hazards, landslides are among the most common natural hazards resulting in loss of life and property each year, leading to socio-economic impact; thus to avoid such losses, a comprehensive study of landslides is required. Landslides generally occur in hill region with steep slopes, heavy precipitation, loose shear strength of soil or due to many human activities like afforestation or construction activities. To resolve the problem of landslides in a hilly region, much research is conducted annually, providing a predicted landslide susceptibility zonation (LSZ) mapping of the area of research. The predicted landslide susceptibility maps are verified based on the past landslide data, an area under the curve (AUC), and other methods to provide an accurate map for landslide susceptibility in any area. In this study,93 research articles are reviewed for analysis of LSZ, and various observations are made based on the recent trends followed by various researchers over the world over the past ten years. The study can be useful for many researchers to practice their research on landslide susceptibility zonation.
M. Babaei; M. Abedi; Gh. H. Norouzi; S. Kazem Alilou
Abstract
This work presents the application of a geostatistical-based modeling approach for building up electrical properties acquired from a geophysical electrical tomography survey deployed for the purpose of porphyry Cu exploration at the Takht-e-Gonbad deposit, in the central domain of Iran. Electrical data ...
Read More
This work presents the application of a geostatistical-based modeling approach for building up electrical properties acquired from a geophysical electrical tomography survey deployed for the purpose of porphyry Cu exploration at the Takht-e-Gonbad deposit, in the central domain of Iran. Electrical data were inverted in 2D along several profiles across the main favorable zones of Cu-bearing mineralization to image electrical resistivity and chargeability properties. Upon tight spatial correlation of these geophysical properties and Cu mineralization (i.e. Cu grade), electrical models were constructed in 3D through geostatistical interpolation of 2D inverted data to provide insights into the geometry of probable ore mineralization. Anomalous geophysical zone that was coincident simultaneously with higher values of electrical chargeability and resistivity, was in accordance with the main body of high Cu grades generated from exploratory drillings. It reveals that the porphyry-type Cu mineralization system in this area has strong geophysical footprints controlled mainly by rock types and alterations. Note that these physical models supply valuable pieces of information for designing the layout of further exploratory drillings, constructing geological characteristics, separating non-mineralized form mineralized zones, and resource modeling.
Exploration
Eid R. Abo-Ezz; El Sayed I Selim; Hatem Aboelkhair; Haytham Sehsah
Abstract
The bimodal hypsometry of the Arabian-Nubian Shield in the Neoproterozoic triggered the formation of post-amalgamation marine bains in the low-stand terranes of the Arabian shield (AS). The carbonate successions in the extraordinary marine basins in the AS are intruded by granite plutons of different ...
Read More
The bimodal hypsometry of the Arabian-Nubian Shield in the Neoproterozoic triggered the formation of post-amalgamation marine bains in the low-stand terranes of the Arabian shield (AS). The carbonate successions in the extraordinary marine basins in the AS are intruded by granite plutons of different causative types, with major shear zones pathways. Therefore, the conditions for the formation of skarn deposits are mature at the contact of the carbonate succession with the causative granite plutons. Multidisciplinary approaches including ASTER data, Magnetic data, and geochemical data have been applied to the Murdama basin to locate the promising areas for skarn deposits. The Murdama basin has contrasting magnetic anomalies of different intensity at the contact between the Murdama limestone and the post-Murdama causative batholiths; significant magnetic anomalies exist at the contact with the Idah causative magmas. Lineaments related to the Najd fault system (NFS) exist eastward, where calc-silicate alteration-related minerals were evolved, with no clues for penetrative effect for such alteration activity along pathways related to the fracture system or at contact with the Abanat suite. Different spectral mapping techniques, including Spectral Information Divergence (SID), Spectral Angle Mapper (SAM), and Constrained Energy Minimization (CEM) confirm that the Idah suite is the predominant causative magma in the study area with highly evolved calc-silicate alteration-related minerals, such as wollastonite, garnet, and pyroxene. Meanwhile, The Idah suite has been identified as the main causative magma for other reduced skarn localities that have been recorded from the Murdama basin, i.e. the Qitan and An Nimriyah South. Alteration related mineral zones of kaolinite, chlorite, muscovite, and hematite are evolved alongside with calc-silicate minerals at the contact bewteen Idah suite, and the Murdama carbonate member. The geochemical data suggests reducing effect for the Idah suite at the contact between the Murdama carbonate succession and Idah plutons. These preliminary results of this study need detailed field investigations and geochemical explorations for the proposed skarn deposits in the Neoproterozoic molasse basins of the AS.
Exploration
Abdelrahem Khalefa Embaby; Sayed Gomaa; Yehia Darwish; Samir Selim
Abstract
This study aims to develop an empirical correlation model for estimating the uranium content of the G-V in the Gabal Gattar area, northeastern desert of Egypt, as a function of the thorium content and the total gamma rays. Using the recent MATLAB software, the effect of selecting tan-sigmoid as a transfer ...
Read More
This study aims to develop an empirical correlation model for estimating the uranium content of the G-V in the Gabal Gattar area, northeastern desert of Egypt, as a function of the thorium content and the total gamma rays. Using the recent MATLAB software, the effect of selecting tan-sigmoid as a transfer function at various numbers of hidden neurons was investigated to arrive at the optimum Artificial Neural Network (ANN) model. The pure-linear function was investigated as the output function, and the Levenberg-Marquardt approach was chosen as the optimization technique. Based on 1221 datasets, a novel ANN-based empirical correlation was developed to calculate the amounts of uranium (U). The results show a wide range of uranium content, with a determination coefficient (R2) of about 0.999, a Root Mean Square Error (RMSE) equal to 0.115%, a Mean Relative Error (MRE) of -0.05%, and a Mean Absolute Relative Error (MARE) of 0.76%. Comparing the obtained results with the field investigation shows that the suggested ANN model performed well.
M. Rezaie; A. Moradzadeh; A. Nejati Kalate
Abstract
One of the most remarkable basis of the gravity data inversion is the recognition of sharp boundaries between an ore body and its host rocks during the interpretation step. Therefore, in this work, it is attempted to develop an inversion approach to determine a 3D density distribution that produces a ...
Read More
One of the most remarkable basis of the gravity data inversion is the recognition of sharp boundaries between an ore body and its host rocks during the interpretation step. Therefore, in this work, it is attempted to develop an inversion approach to determine a 3D density distribution that produces a given gravity anomaly. The subsurface model consists of a 3D rectangular prisms of known sizes and positions and unknown density contrasts that are required to be estimated. The proposed inversion scheme incorporates the Cauchy norm as a model norm that imposes sparseness and the depth weighting of the solution. A physical-bound constraint is enforced using a generic transformation of the model parameters. The inverse problem is posed in the data space, leading to a smaller dimensional linear system of equations to be solvedand a reduction in the computation time. For more efficiency, the low-dimensional linear system of equations is solved using a fast iterative method such as Lanczos Bidiagonalization. The tests carried out on the synthetic data show that the sparse data-space inversion produces blocky and focused solutions. The results obtained for the 3D inversion of the field gravity data (Mobrun gravity data) indicate that the sparse data-space inversion could produce the density models consistent with the true structures.
Rock Mechanics
M. Hosseini; A. R. Khodayari
Abstract
The fracture mechanics examines the development and expansion of cracks in solids and how they affect the deformation of materials. The stress intensity factors at the tip of the crack and the critical stress intensity factors or fracture toughness of materials are considered in the relevant criteria. ...
Read More
The fracture mechanics examines the development and expansion of cracks in solids and how they affect the deformation of materials. The stress intensity factors at the tip of the crack and the critical stress intensity factors or fracture toughness of materials are considered in the relevant criteria. There are three main modes of applying forces to a crack including the tensile mode, shear mode, and mixed mode. Mode II fracture toughness, which is also called the shear mode, is an important parameter for investigating the rock behaviors. This parameter is used in many different areas such as mining and tunneling. Several methods have been proposed for determining the mode II fracture toughness. In this work, the Punch-True-Shear (PTS) test, standardized by the International Society for Rock Mechanics, was used to determine the fracture toughness while the confining pressure is present. The studied sample was the Lushan sandstone. In this work, notchd cylindrical specimens were prepared for PTS testing. In order to investigate the effect of confining pressure, some tests were conducted in the presence of the confining pressures of 0, 3, 5, 7, and 10 MPa, and to check the effect of temperature, some tests were conducted under 1, 5, and 10 heating and cooling cycles at 60, 100, and 150 ˚C as well as at the ambient temperature (25 °C). The confining pressure of 3 MPa was used in all the tests to examine the effect of temperature. The analyses results showed that with increase in the confining pressure, the mode II fracture toughness and the fracture energy would increase as well. By increasing the number of heating-cooling cycles, the mode II fracture toughness as well as the fracture energy would decrease leading to a reduced fracture toughness and energy for all the three modes of heating specimens up to 60, 100, and 150 ˚C. The effect of the number of heating-cooling cycles on reducing the fracture toughness and fracture energy was greater than the effect of temperature.
Exploitation
S. Tabasi; M. Kurdi; M. Bahrammanesh
Abstract
The objective of this work was to investigate the potential of three different kinds of Iranian peat and swamp soils as sources of organic matter (OM) in the Golestan Province, Northern Iran. Comparison of the peats was done in terms of the degree of humification on the von Post scale. Moreover, the ...
Read More
The objective of this work was to investigate the potential of three different kinds of Iranian peat and swamp soils as sources of organic matter (OM) in the Golestan Province, Northern Iran. Comparison of the peats was done in terms of the degree of humification on the von Post scale. Moreover, the X-ray fluorescence, X-Ray Diffractometry, and Fourier transform infra-red (FT-IR) techniques were used to investigate their mineralogical and geochemical properties. Also a method was tested for the sequential extraction of OM from Suteh peat, in which the following organic solvents were utilised in sequence: (I) ethyl ether, (II) ethanol, (III) 1,4-dioxane, and (IV) n-hexane; each extract was analysed by FT-IR spectroscopy, and the residue was used in the next phase. The results obtained indicated that OMOM extracted during each step was different; nevertheless, some spectral features such as those attributable to lignin, carbohydrate, phenol, wax, and fats were common to all phases. Major absorbance spectra were related to specific extraction steps, namely polysaccharide, proteins, alkyne, humic acids, esters, aldehydes, and cellulose.
S. Najafi Ghoshebolagh; A. Kamkar Rouhani; A.R. Arab Amiri; H. Bizhani
Abstract
As many gold deposits are associated with sulfide zones, and the direct exploration of gold deposits using the geophysical methods is very difficult due to its low amount in the sub-surface, the direct exploration of sulfide zones by the geophysical electrical resistivity and induced polarization (IP) ...
Read More
As many gold deposits are associated with sulfide zones, and the direct exploration of gold deposits using the geophysical methods is very difficult due to its low amount in the sub-surface, the direct exploration of sulfide zones by the geophysical electrical resistivity and induced polarization (IP) methods may lead to the indirect exploration of gold deposits. The gold deposit in the Kervian area is located in the Kurdistan shear zone, and is directly related to the sulfide, silica, and carbonate alteration units. After acquiring the resistivity and IP data, 2D modeling of the data is made in order to indirectly identify the gold-bearing zones in the surveyed area. As some of the identified geophysical anomalies indicating the sulfide zones may not be associated with the economic amounts of gold, in order to obtain an exploration pattern for the gold deposit in the studied area, a combination of the geophysical data modeling and interpretation results with the geological information and other exploratory data is used to reduce the uncertainty in identifying the gold-bearing zones in the studied area. Thus, modeling and interpretation of the geophysical data lead to identify the sub-surface anomalies as the locations of possible gold mineralization in the area, and then the drilling points are suggested in the area. Considering the geological studies and chemical analysis of the samples taken from the drilled boreholes crossing some of the geophysical anomalies, we conclude that the geophysical anomalies occurring inside the phyllite and carbonate units in the area can contain an economic amount of gold, and thus are recommended as the top priority for further exploration.
K. Seifpanahi Shabani; A. Vaezian
Abstract
In the environment, two main sources of heavy metals are natural backgrounds derived from parent rocks and anthropogenic contamination including mineral industrial wastes, tailing damps of sulfide mines, agrochemicals, and other outputs of industrial activities and factories. In this work, the physico-chemical ...
Read More
In the environment, two main sources of heavy metals are natural backgrounds derived from parent rocks and anthropogenic contamination including mineral industrial wastes, tailing damps of sulfide mines, agrochemicals, and other outputs of industrial activities and factories. In this work, the physico-chemical aspects of the magnetic Nano- mineral surfaces are studied in contrast to acid mine drainage using the multi- -analytical techniques XRF, XRD, BET, SEM, TEM, FT-IR, and AFM before and after adsorption of toxic elements. According to the results obtained, the FT-IR analysis presents a suitable curve, showing that the adsorption site of the sorption is filled with Ni(II) and Cd(II) ions. The results obtained show that the adsorption reaction is due to the high removal of the toxic elements from acid mine drainages.
Sh. Rezaei; A. Imam Ali Pour
Abstract
In the recent years, according to the difficulty of accurately measuring parameters and demarcation of earth sciences, attempts have been made to simplify the natural events for better investigation using geo-modelling. Modeling with intelligent methods is one of the new methods that has been considered ...
Read More
In the recent years, according to the difficulty of accurately measuring parameters and demarcation of earth sciences, attempts have been made to simplify the natural events for better investigation using geo-modelling. Modeling with intelligent methods is one of the new methods that has been considered in this field in the recent years. In this work, the intelligent method of adaptive neural-fuzzy inference system (ANFIS) is used to predict the elements of lead and zinc located in the Guard Kooh area, north of Yazd province in Iran. Descriptive statistics of data and correlation matrices of studied elements are obtained using the SPSS software. After the data is standardized, imported to the MATLAB software, and the lead and zinc elements are predicted using the ANFIS-SCM method. In this method, 70% of the data (175 samples) are set as the training data, and the rest (75 samples) are set as the test data, which are randomly selected. Using the obtained results, it is found that the grade of the estimated elements in the studied area has a good accuracy and a high correlation with the grade of the analyzed elements. As a result, the ANFIS-SCM intelligent method is a useful and accurate method for estimating the lead and zinc elements.
M. Mirzaie; P. Afzal; A. Adib; E. Rahimi; Gh. Mohammadi
Abstract
Detection of mineralized zones based on ores and gangues is important for mine planning and excavation operation. The major goal of this research work was to determine the zones based on ores and gangues by a combination of fractal and factor analysis in the Chah Gaz iron ore (Central Iran). The Concentration-Volume ...
Read More
Detection of mineralized zones based on ores and gangues is important for mine planning and excavation operation. The major goal of this research work was to determine the zones based on ores and gangues by a combination of fractal and factor analysis in the Chah Gaz iron ore (Central Iran). The Concentration-Volume (C-V) fractal method was carried out for Fe, P and S, which indicated that the main mineralized zones consisted of the Fe, S, and P values ≥ 57%, ≤ 0.4%, and ≤0.3%, respectively. Factor analysis categorized variables in two groups including factor 1 (F1) and factor 2 (F2) for ore and gangue, respectively. The C-V fractal modeling on the derived factors showed four zones for F1 and F2. Based on the correlation among the results of fractal modeling on the elements and factors, the first and second zones of F1 were proper for exploitation. Furthermore, the last and first zones of F1 and F2 could be assumed as the main waste for mining excavation.
Vivek Sharma; Pardeep Kumar; Ravi Kumar Kumar Sharma
Abstract
Himachal Pradesh state is located in seismically active western Himalayas (India) and its seven districts are in seismic zone V and other in zone IV as per the seismic code of India. Ninety% area of Hamirpur district, the studied area, lies in zone V. Peak ground acceleration (PGA) is one of the most ...
Read More
Himachal Pradesh state is located in seismically active western Himalayas (India) and its seven districts are in seismic zone V and other in zone IV as per the seismic code of India. Ninety% area of Hamirpur district, the studied area, lies in zone V. Peak ground acceleration (PGA) is one of the most important seismic response parameters in structural seismic design, largely influenced by the sub-soil and input seismic motion characteristics. In the present work, the primary objective is to identify the areas in the district that are prone to amplification of peak ground acceleration and can be delineated for infrastructural planning. Peak ground acceleration is one of the most important parameters used in seismic design of the structures. It is estimated using the computer programme ProShake, wherein the soil parameters from 181 borehole profiles up to 30 m depth and software in-built standard earthquake input motions of magnitude 6.9, 7.0, and 7.2 used as the input parameters. The output peak ground acceleration range from 0.24 g to 0.72 g at the ground surface and from 0.21 g to 0.54 g at a depth of 10 m. There is an attenuation of peak ground acceleration at 30 m depth. The estimation of peak ground acceleration will play an important role in delineating the starta having higher peak ground acceleration amplification. This information can be effectively used for planning of important infrastructure projects like hospitals, educational institutions, and commercial establishments in an economical way in the studied area.
Rock Mechanics
Mounius Bashir; Manendra Singh; Krishna Kotiyal
Abstract
Among all methods for ground improvement, stone columns have become more popular recently, owing to their simple construction and plentiful availability of raw materials. However, in relatively softer soils, ordinary stone columns (OSCs) experience significant bulging owing to the minimal confinement ...
Read More
Among all methods for ground improvement, stone columns have become more popular recently, owing to their simple construction and plentiful availability of raw materials. However, in relatively softer soils, ordinary stone columns (OSCs) experience significant bulging owing to the minimal confinement offered by the surrounding soil. This necessitates the introduction of reinforcements in the stone column, to enhance their strength in such circumstances. The subject of this investigation was the assessment of the behavior of horizontally reinforced stone columns (HRSCs), introduced in layered soil, under the raft foundation. The soil material included was idealised using an isotropic linearly elastic fully plastic model with a Mohr-Coulomb failure criterion. There are a total of six separate factors required by the Mohr-Coulomb criterion. These include cohesion (c), the soil's dry unit weight (γd), the Poisson ratio (μ), the angle of internal friction (φ), the angle of dilatancy (ψ), and the Young's modulus of elasticity (E). At the very beginning, the load-settlement response of unreinforced soil was evaluated followed by a comparative study between square and triangular arrangements of stone columns, at different spacings, under the raft, to arrive at the configuration that encounters minimal settlements and lateral deformations. Furthermore, circular discs of suitable geogrid material were introduced along the length of the stone column. The elastic behaviour of geogrids is governed by two properties: tensile modulus and yield strength. The load-settlement behavior and lateral deformations of the resulting reinforced stone columns, with OSCs were compared. Furthermore, the spacing between the circular discs of geogrids was kept at D/2, D, 2D, and 3D, where D is the diameter of the stone column. According to the findings of an investigation conducted using FEM software, the performance of a granular pile group that is laid out in the shape of a triangle encounters much less lateral deformation and settlement than the square arrangement. The results also show that the performance of HRSCs was way better than those of OSCs, under the same in-situ soil conditions.
Exploitation
S. Saadat
Abstract
Motivated by the recent successful results of using GIS modeling in a variety of problems related to the geosciences, some knowledge-based methods were applied to a regional scale mapping of the mineral potential, special for Cu-Au mineralization in the Feyz-Abad area located in the NE of Iran. Mineral ...
Read More
Motivated by the recent successful results of using GIS modeling in a variety of problems related to the geosciences, some knowledge-based methods were applied to a regional scale mapping of the mineral potential, special for Cu-Au mineralization in the Feyz-Abad area located in the NE of Iran. Mineral Prospectivity Mapping (MPM) is a multi-step process that ranks a promising target area for more exploration. In this work, five integration methods were compared consisting of fuzzy, continuous fuzzy, index overlay, AHP, and fuzzy AHP. For this purpose, geological maps, geochemical samples, and geophysics data were collected, and a spatial database was constructed. ETM + images were used to extract the hydroxyl and iron-oxide alterations, and to identify the linear and fault structures and prospective zones in regional scale; ASTER images were used to extract SiO2 index, kaolinite, chlorite, and propylitic alterations in a district scale. All the geological, geochemical, and geophysical data was integrated for MPM by different analysis. The values were determined by expert knowledge or logistic functions. Based upon this analysis, three main exploration targets were recognized in the Feyz-Abad district. Based on field observation, MPM was proved to be valid. The prediction result is accurate, and can provide directions for future prospecting. Among all the methods evaluated in this work, which tend to generate relatively similar results, the continuous fuzzy model seems to be the best fit in the studied area because it is bias-free and can be used to generate reliable target areas.
Mineral Processing
S. Shahraki; M. Karamoozian; A. Azizi
Abstract
Sulfur is one of the most significant impurities in coal, which reduces the quality of coal and also results in environmental pollution. This work was aimed to investigate the removal of sulfur from coal by the leaching method employing parameters expected to affect the removal rate such as acid concentration ...
Read More
Sulfur is one of the most significant impurities in coal, which reduces the quality of coal and also results in environmental pollution. This work was aimed to investigate the removal of sulfur from coal by the leaching method employing parameters expected to affect the removal rate such as acid concentration (10-30%), temperature (40-80 °C), and reaction time (40-100 min). A response surface methodology using Box-Behnken design was employed to maximize, model, and evaluate the factors affecting the desulfurization process. The results obtained indicated that the desulfurization value increased with increase in the acid concentration, temperature, and reaction time. A quadratic model with a high correlation coefficient (R2=0.98) is proposed and developed for the relationship between the removal value and the influential factors. The modeling results demonstrated that the significance degree of factors was in the order of acid concentration>temperature>reaction time. It was also found that the maximum desulfurization (about 87%) could be obtained under the optimal conditions of acid concentration=25%, temperature=80 °C, and leaching time=84 minutes.
Exploitation
H. Moini; F. Mohammad Torab
Abstract
Kriging is an advanced geostatistical procedure that generates an estimated surface or 3D model from a scattered set of points. This method can be used for estimating resources using a grid of sampled boreholes. However, conventional ordinary kriging (OK) is unable to take locally varying anisotropy ...
Read More
Kriging is an advanced geostatistical procedure that generates an estimated surface or 3D model from a scattered set of points. This method can be used for estimating resources using a grid of sampled boreholes. However, conventional ordinary kriging (OK) is unable to take locally varying anisotropy (LVA) into account. A numerical approach has been presented that generates an LVA field by calculating the anisotropy parameters (direction and magnitude) in each cell of the estimation grid. After converting the shortest anisotropic distances to Euclidean distances in the grid, they can be used in variography and kriging equations (LVAOK). The ant colony optimization (ACO) algorithm is a nature-inspired metaheuristic method that is applied to extract image features. A program has been developed based on the application of ACO algorithm, in which the ants choose their paths based on the LVA parameters and act as a moving average window on a primary interpolated grid. If the initial parameters of the ACO algorithm are properly set, the ants would be able to simulate the mineralization paths along continuities. In this research work, Choghart iron ore deposit with 2,447 composite borehole samples was studied with LVA-kriging and ACO algorithm. The outputs were cross-validated with the 111,131 blast hole samples and the Jenson-Shannon (JS) criterion. The obtained results show that the ACO algorithm outperforms both LVAOK and OK (with a correlation coefficient value of 0.65 and a JS value of 0.025). Setting the parameters by trial-and-error is the main problem of the ACO algorithm.
M. Fooladi; F. Ghadimi; Seyed J. Sheikh Zakariaee; H. Rahimpour Bonab
Abstract
In this work, we determine the factors affecting soil erosion and its effect on dust formation around the Mineral Salts Company in Mighan playa of Arak. Seventy samples are randomly sampled from a depth of 10 cm above the ground around Mighan playa. Some factors involved (e.g. sample aggregation, lime, ...
Read More
In this work, we determine the factors affecting soil erosion and its effect on dust formation around the Mineral Salts Company in Mighan playa of Arak. Seventy samples are randomly sampled from a depth of 10 cm above the ground around Mighan playa. Some factors involved (e.g. sample aggregation, lime, organic matter, pH, Na, K, Ca, and electrical conductivity) are determined and compared with the statistical parameters such as the correlation matrix and cluster analysis in order to determine the erosion rate in each sample based on the soil properties. The results obtained show that soil salinity, as a major factor in erosion, causes soil depletion and degradation in the area. Also a high amount of sand in the environment causes the soil texture instability. The factors such as the amount of gravel, organic matter, and K are the main erosion inhibiting factors, which have little effect on the majority of the samples. The organic matter content in most samples is less than 4%, and does not have much effect on erosion. The amount of clay in the samples is less than 10%, and has no effect on the adhesion of soil texture. The main factor affecting the erosion rate is EC and Na in the soil. The inhibitors such as gravel, organic matter, K, and clay amount in the samples can be considered as a protective or reducing factor in erosioning. Rising in the mentioned factors in the soil causes a lack of density and instability in the soil, and increases the rate of soil erosion. The results of this work show that addition of soil erosion increases the amount of fine-grained soil, and dust is a result of increased production. Also the presence of mineral salt in the area increases the production rate of dense soil, and as a result, rises the amount of dust produced in the area. Therefore, we need to stabilize mining soil, and prevent dust generation around the Mineral Salts Company.
M. Shenavar; M. Ataee-pour; M. Rahmanpour
Abstract
Production scheduling in underground mines is still a manual process, and achieving a truly optimal result through manual scheduling is impossible due to the complexity of the scheduling problems. Among the underground mining methods, sub-level caving is a common mining method with a high production ...
Read More
Production scheduling in underground mines is still a manual process, and achieving a truly optimal result through manual scheduling is impossible due to the complexity of the scheduling problems. Among the underground mining methods, sub-level caving is a common mining method with a high production rate for hard rock mining. There are limited studies about long-term production scheduling in the sub-level caving method. In this work, for sub-level caving production scheduling optimization, a new mathematical model with the objective of net present value (NPV) maximization is developed. The general technical and operational constraints of the sub-level caving method such as opening and developments, production capacity, sub-level mining geometry, and ore access are considered in this model. Prior to the application of the scheduling model, the block model is processed to remove the unnecessary blocks. For this purpose, the floating stope algorithm is applied in order to determine the ultimate mine boundary and reduce the number of blocks that consequently reduces the running time of the model. The model is applied to a bauxite mine block model and the maximum NPV is determined, and then the mine development network is designed based on the optimal schedule.