S. Mohammadi; M. Ataei; R. Khalokakaei; E. Pourzamani
Abstract
Optimization of the exploitation operation is one of the most important issues facing the mining engineers. Since several technical and economic parameters depend on the cut-off grade, optimization of this parameter is of particular importance. The aim of this optimization is to maximize the net present ...
Read More
Optimization of the exploitation operation is one of the most important issues facing the mining engineers. Since several technical and economic parameters depend on the cut-off grade, optimization of this parameter is of particular importance. The aim of this optimization is to maximize the net present value (NPV). Since the objective function of this problem is non-linear, three methods can be used to solve it: analytical, numerical, and meta-heuristic. In this study, the Golden Section Search (GSS) method and the Imperialist Competitive Algorithm (ICA) are used to optimize the cut-off grade in mine No. 1 of the Golgohar iron mine. Then the results obtained are compared. Consecuently, the optimum cut-off grades using both methods are calculated between 40.5% to 47.5%. The NPVs obtained using the GSS method and ICA were 18487 and 18142 billion Rials, respectively. Thus the value for GSS was higher. The annual number of iterations in the GSS method was equal to 18, and that for ICA was less than 18. Also computing and programming the process of golden section search method were easier than those for ICA. Therefore, the GSS method studied in this work is of a higher priority.
A. Zarean; R. Poormirzaee
Abstract
Shear-wave velocity ( ) is an important parameter used for site characterization in geotechnical engineering. However, dispersion curve inversion is challenging for most inversion methods due to its high non-linearity and mix-determined trait. In order to overcome these problems, in this study, a joint ...
Read More
Shear-wave velocity ( ) is an important parameter used for site characterization in geotechnical engineering. However, dispersion curve inversion is challenging for most inversion methods due to its high non-linearity and mix-determined trait. In order to overcome these problems, in this study, a joint inversion strategy is proposed based on the particle swarm optimization (PSO) algorithm. The seismic data considered for designing the objects are the Rayleigh wave dispersion curve and seismic refraction travel time. For joint inversion, the objective functions are combined into a single function. The proposed algorithm is tested on two synthetic datasets, and also on an experimental dataset. The synthetic models demonstrate that the joint inversion of Rayleigh wave and travel time return a more accurate estimation of VS in comparison with the single inversion Rayleigh wave dispersion curves. To prove the applicability of the proposed method, we apply it in a sample site in the city of Tabriz located in the NW of Iran. For a real dataset, we use refraction microtremor (ReMi) as a passive method for getting the Rayleigh wave dispersion curves. Using the PSO joint inversion, a three-layer subsurface model was delineated.The results obtained for the synthetic datasets and field dataset show that the proposed joint inversion method significantly reduces the uncertainties in the inverted models, and improves the revelation of boundaries.
H. R. Nejati; Seyed A. Moosavi
Abstract
Assessment of the correlation between rock brittleness and rock fracture toughness has been the subject of extensive research works in the recent years. Unfortunately, the brittleness measurement methods have not yet been standardized, and rock fracture toughness cannot be estimated satisfactorily by ...
Read More
Assessment of the correlation between rock brittleness and rock fracture toughness has been the subject of extensive research works in the recent years. Unfortunately, the brittleness measurement methods have not yet been standardized, and rock fracture toughness cannot be estimated satisfactorily by the proposed indices. In the present study, statistical analyses are performed on some data collected from the literature to develop two equations for estimation of modes I and II fracture toughness. Then a probabilistic sensitivity analysis is performed to determine the impact of the input parameters on the output ones. Based on the results obtained for the probabilistic analysis, a new empirical brittleness index including tensile strength, uniaxial compressive strength, and elastic modulus is suggested for estimating modes I and II fracture toughness. The analyses results reveal that the proposed index is capable of estimating rock fracture toughness with more satisfactory correlation compared to the previous indices.
L. Akpan; A. Celestine Tse; F. dumbari Giadom; C. Iorfa Adamu
Abstract
In this study, the chemical composition of water and soils contiguous to two abandoned coal mines in southeastern Nigeria, was assessed to evaluate the impact of water flow from the mines ponds on the geoenvironment and potential for acid mine drainage (AMD). Parameters including the pH, anions and cations, ...
Read More
In this study, the chemical composition of water and soils contiguous to two abandoned coal mines in southeastern Nigeria, was assessed to evaluate the impact of water flow from the mines ponds on the geoenvironment and potential for acid mine drainage (AMD). Parameters including the pH, anions and cations, and the heavy metals were measured. These were used to evaluate contamination/pollution using hybrid factors including Pollution Load Index, factors, enrichment factors, pollution load index and index of geoaccumulation. The pH range of 3.4 to 5.9 classified the water as weakly to strongly acidic, typical of AMD. The SO42– ion, which indicates pollution by mine waters, showed moderate to high concentrations. Iron, zinc lead and copper were the most abundant heavy metals. Pollution Load Index values were greater than unity which show progressive deterioration in water and sediment quality. The Enrichment Factor values of up to 1 indicated enrichment through lithogenic and anthropogenic sources. The mine dumps serve as pools that can release toxic heavy metals into the water bodies by various processes of remobilization. Based on the lithology, mineralogy, chemical concentrations and environmental factors, the study has shown that there exists a potential for the generation of AMD. The heavy metals enriched mine flow, especially iron, empty into the nearby water bodies which serve as sources of municipal water supply. Consumption of untreated water over a prolonged period from these water sources may be detrimental to health. Remedial measure and continuous monitoring are recommended for good environmental stewardship.
Rock Mechanics
S. Moshrefi; K. Shahriar; A. Ramezanzadeh; K. Goshtasbi
Abstract
A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research ...
Read More
A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimate strength of shale, and comparison was made with support vector machine (SVM), multiple linear regression models, and the widely used conventional polyaxial failure criteria in the stability analysis of rock structures, Drucker-Prager, and Mogi-Coulomb. For building the model, the corresponding results of triaxial and polyaxial tests have been performed on shales by various researchers. They were collected from reliable published articles. The results obtained showed that a feed forward back propagation multi-layer perceptron (MLP) was used and trained using the Levenberg–Marquardt algorithm, and the 2-4-1 architecture with root-mean-square-error (RMSE) of 24.41 exhibits a better performance in predicting the ultimate strength of shale in comparison with the investigated models. Also for further validation, triaxial tests were performed on the deep shale specimens. They were prepared from the Ramshire oilfield in SW Iran. The results obtained were compared with ANN, SVM, multiple linear regression models, and the conventional failure criterion prediction. They showed that the ANN model predicted ultimate strength with a minimum error and RMSE being equal to 43.81. Then the model was used for prediction of the threshold broken pressure shale layer in the Gachsaran oilfield in Iran. For this, a vertical and horizontal stress was calculated based on a depth of shale layer. The threshold broken pressure was calculated for the beginning and ending of a shale layer to be 154.21 and 167.98 Mpa, respectively.
Rock Mechanics
Seyed S. Mousavi; M. Nikkhah; Sh. Zare
Abstract
In this work, we tried to automatically optimize the cost of the concrete segmental lining used as a support system in the case study of Mashhad Urban Railway Line 2 located in NE Iran. Two meta-heuristic optimization methods including particle swarm optimization (PSO) and imperialist competitive algorithm ...
Read More
In this work, we tried to automatically optimize the cost of the concrete segmental lining used as a support system in the case study of Mashhad Urban Railway Line 2 located in NE Iran. Two meta-heuristic optimization methods including particle swarm optimization (PSO) and imperialist competitive algorithm (ICA) were presented. The penalty function was used for unfeasible solutions, and the segmental lining structure was defined by nine design variables: the geometrical parameters of the lining cross-section, the reinforced feature parameters, and the dowel feature parameters used among the joints to connect the segment pieces. Furthermore, the design constrains were implemented in accordance with the American Concrete Institute code (ACI318M-08) and guidelines of lining design proposed by the International Tunnel Association (ITA). The objective function consisted of the total cost of structure preparation and implementation. Consequently, the optimum design of the system was analyzed using the PSO and ICA algorithms. The results obtained showed that the objective function of the support system by the PSO and ICA algorithms reduced 12.6% and 14% per meter, respectively.
Sonu Singh; Vijay Shankar; Joseph Tripura
Abstract
With an emphasis on establishing a connection between electrical and sub-surface hydro-geophysical features of soils, a critical evaluation of electrical resistivity technique applications is conducted in the current work. In order to identify diverse subsurface soil characteristics at different stratifications, ...
Read More
With an emphasis on establishing a connection between electrical and sub-surface hydro-geophysical features of soils, a critical evaluation of electrical resistivity technique applications is conducted in the current work. In order to identify diverse subsurface soil characteristics at different stratifications, the electrical resistivity approach is a widely utilized geophysical method that is extensively adopted in various Earth landforms. The assessment of sub-surface hydro-geophysical features of soils, on the other hand, offers information on the hydrogeological and geological properties including the classification of aquifer types, groundwater pollution, and seismic data. The vast majority of the information compiled in this work may help the researchers better understand some basic fundamental issues relating the hydrogeology.
M. Alipour Shahsavari; P. Afzal; A. Hekmatnejad
Abstract
The Urumieh-Dokhtar Magmatic Arc (UDMA) is recognized as an important porphyry, disseminated, vein-type and polymetallic mineralization arc. The aim of this study is to identify and subsequently determine geochemical anomalies for exploration of Pb, Zn and Cu mineralization in Mial district situated ...
Read More
The Urumieh-Dokhtar Magmatic Arc (UDMA) is recognized as an important porphyry, disseminated, vein-type and polymetallic mineralization arc. The aim of this study is to identify and subsequently determine geochemical anomalies for exploration of Pb, Zn and Cu mineralization in Mial district situated in UDMA. Factor analysis, Concentration-Number (C-N) fractal model and Local Linear Model Tree (LOLIMOT) algorithm used for this purpose. Factor analysis utilized in recognition of the correlation between elements and their classification. This classified data used for training the LOLIMOT algorithm based on relevant elements. The results of the LOLIMOT algorithm represent anomalies in areas with no lithogeochemical samples. Although, the C-N log-log plot for target elements were generated based on stream sediment and lithogeochemical samples which could be delineated mineral potential maps of the target elements. Results obtained by the LOLIMOT and fractal modeling show that the SW and the Eastern parts of the area are proper for further exploration of Cu, Pb, and Zn.
F. Doulati Ardejani; S. Maghsoudy; M. Shahhosseini; B. Jodeiri Shokri; Sh. Doulati Ardejani; F. Shafaei; F. Amirkhani Shiraz; A. Rajaee
Abstract
Considering that mining has many environmental impacts from the exploration phase to production and finally closure, it is necessary to plan the activities so that the concept of green mining is realized in its true meaning. This means that mining is carried out in order to obtain the minerals that are ...
Read More
Considering that mining has many environmental impacts from the exploration phase to production and finally closure, it is necessary to plan the activities so that the concept of green mining is realized in its true meaning. This means that mining is carried out in order to obtain the minerals that are used in various industries; however, by taking appropriate measures, the impacts of mining on the environment are reduced to a minimum level. Since there is little information about the environmental, ecological, hydrological, and hydrogeological status in most mining areas, a comprehensive study of the area's water, soil, plants, and animal species should be conducted. The existence of permanent and seasonal rivers in the vicinity of some mines, in some cases being located in protected areas of the Iranian Department of Environment, and the presence of vegetation near some mines are among the matters that cause many environmental challenges in the mining areas. For this purpose, a series of comprehensive studies are critical in the pre-mining, during mining, and closure phases of the mine life. In addition, detailed studies should be done on factories such as smelters located in the mining areas. Life cycle assessment (LCA) is widely used in order to determine the environmental status of these factories. Furthermore, the issue of process water and water recycling, as well as waste management, should be considered. Nowadays, the environmental monitoring technology is one of the widely used tools in many mines in the world. Moreover, these mining companies' green space management system should be given special attention according to the obligatory standards of the Iranian Department of Environment. In this paper, a conceptual framework for the green mining method will be introduced for the coal mines to consider the economic and social aspects, and we pay a special attention to the health, safety, and environmental requirements.
Rock Mechanics
Manendra Singh; Moqin Mushtaq Zargar; Vivek Kumar Sharma; Ritu Raj Nath
Abstract
Non-structural slope stabilization techniques are gaining popularity for cost-affordability and environmental sustainability and are intended primarily to enhance the soil shear strength parameters. The present study evaluates the performance of three biopolymers: Guar Gum, Gellan Gum, and Xanthan Gum ...
Read More
Non-structural slope stabilization techniques are gaining popularity for cost-affordability and environmental sustainability and are intended primarily to enhance the soil shear strength parameters. The present study evaluates the performance of three biopolymers: Guar Gum, Gellan Gum, and Xanthan Gum as slope stabilizers for a quintessential soil slope of a local district in the foothills of the Lesser Himalayas. The study measures the shear strength of biopolymer-treated soil at varying concentrations and moisture contents, and concludes that the soil shear strength is highly influenced by the concentration of biopolymer and the moisture content. The results demonstrate significant increase (48% and 7%) of the cohesion and friction angle of a particular biopolymer-treated sample for a specific moisture content. However, the addition of biopolymers to the soil also leads to a decrease in the permeability of the original sample. The study, in the next phase, numerically computes the Factor of Safety of the test-bed slope before and after the application of biopolymers, and observes that the addition of biopolymers in soil significantly increases (34%) the factor of safety at an optimum combination concentration and moisture content for all three biopolymers. This signifies their utility as non-structural slope stabilizers. By highlighting the improved shear strength of the biopolymer-treated soils, the study complements the current initiatives for non-structural slope stabilization and sustainable soil enhancement and adds to the new yet expanding body of information regarding long-term, non-structural slope stabilizing techniques.
Mine Economic and Management
Aditi Nag; Smriti Mishra
Abstract
Integrating Artificial Intelligence (AI) into heritage tourism has opened new avenues for transforming visitors’ engagement with historical sites. This research paper delves into a novel paradigm, focusing on AI integration in inter- and intra-regional mining heritage site planning and design. ...
Read More
Integrating Artificial Intelligence (AI) into heritage tourism has opened new avenues for transforming visitors’ engagement with historical sites. This research paper delves into a novel paradigm, focusing on AI integration in inter- and intra-regional mining heritage site planning and design. Recognizing this context's unique challenges and opportunities, the study aims to uncover critical ideas and theories on how AI enhances visitor experience, promotes cultural preservation, sustainability, and stakeholder collaboration. Acknowledging the distinctive challenges and opportunities presented by inter- and intra-regional mining heritage contexts, this research work underscores the critical importance of striking a harmonious equilibrium between technological advancements and preserving historical and cultural legacies. Drawing from a cross-disciplinary approach, the study examines the profound implications of integrating AI into mining heritage sites' planning and design strategies. The study reviews 199 articles on AI-driven planning and design benefits, examining potential advantages. Ethical considerations, algorithmic biases, and the role of interdisciplinary research are also explored. The study highlights the intricate interplay between AI-enhanced engagement, responsible tourism practices, and the meaningful representation of local cultures. By shedding light on this uncharted territory, the research contributes to developing informed strategies that harness AI's potential to shape inter- and intra-regional mining heritage site planning and design, fostering responsible and impactful tourism experiences. By delving into this paradigm, it hopes to arm the researchers, policy-makers, practitioners, and other stakeholders with information and understanding that will help them forge a progressive and morally upright future, in which technology co-exists peacefully with practices for cultural preservation and sustainable tourism.
M Ebadi; Saeed Karimi Nasab; H Jalalifar
Abstract
rnDetermination of rock mass deformation modulus is very important in different projects, especially in civil and mining engineering works. In-situ measurements such as dilatometer, plate load and flat jack methods may be applied to determine the deformation modulus. However, these methods are very expensive ...
Read More
rnDetermination of rock mass deformation modulus is very important in different projects, especially in civil and mining engineering works. In-situ measurements such as dilatometer, plate load and flat jack methods may be applied to determine the deformation modulus. However, these methods are very expensive and time- consuming. Analytical methods are very useful approaches which can also be used to estimate rock mass deformation modulus. Using these methods, the parameters influencing the rock mass modulus can also be evaluated. Analytical methods are based on the resultant displacement of rock mass and joints which are finally used to predict the rock modulus. It should be mentioned that none of the available analytical models could present a model to consider the effect of lateral stresses on rock mass modulus calculations. Therefore, this paper tries to investigate the effect of intermediate principal stress (σ2) and minimum principal stress (σ3) on the deformation modulus of jointed rock mass.rn
H. Khoshdast; M. Mahmoodabadi
Abstract
A new method is developed for a fast identification of the stability situation of industrial processes. The proposed method includes two factor ratios of the control constants for the upper and lower control limits to process these constants. An indication ratio is then defined as the ratio of the maximum ...
Read More
A new method is developed for a fast identification of the stability situation of industrial processes. The proposed method includes two factor ratios of the control constants for the upper and lower control limits to process these constants. An indication ratio is then defined as the ratio of the maximum data range value to the difference between the maximum and average values for individual data points. It is shown that if the indication ratio comes into values between the corresponding control factor ratios, the process will be under control, and otherwise, if the indication ratio decreases to smaller than the lower control factor ratio or gets more than the upper control factor ratio, the process will be expected to be out-of-control. Validation of the method was successfully resulted using two series of quality control datasets obtained from Zarand Iron Ore Complex (Zarand, Iran) and Miduk Copper Complex (Shahr Babak, Iran). The results obtained show that the process responses predicted by the proposed method are in agreement with those indicated by the conventional chart-based method. The developed method eliminates the need for drawing the process control charts used to assess the process control level. The superiority of the proposed method over the chart-based method becomes apparent especially when a large number of control charts are necessary to be drawn and interpreted for engineering decision-making purposes.
M. Yazdi; A. Bahrami; Z. Alaminia; H. Jamali; M. A. Mackizadeh
Abstract
This research work introduces the Early Triassic, Late Triassic-Early Jurassic, and Early Cretaceous silica-rich sand levels at east and central Alborz, Kopeh-Dagh, and Central Iran, and compares them with the Permian silica-rich sand level in the Chirouk mine at east Iran. Ghoznavi and Gheshlaq loose ...
Read More
This research work introduces the Early Triassic, Late Triassic-Early Jurassic, and Early Cretaceous silica-rich sand levels at east and central Alborz, Kopeh-Dagh, and Central Iran, and compares them with the Permian silica-rich sand level in the Chirouk mine at east Iran. Ghoznavi and Gheshlaq loose sand in Alborz (Early Triassic-Early Jurassic), Soh quartzite in Central Iran (Early Triassic-Early Jurassic), Firuzeh sands with mud levels in Kopeh-Dagh (Early Cretaceous), and Sarnaza in Central Alborz (Late Triassic-Early Jurassic) silica-rich levels are studied in this work. Geochemical analysis and physical factors of the studied silica levels are checked regarding grain size, heat resistance, and steel molding. The laboratory and industrial methods used for washing, sieving, heating, molding, and controlling the purity of refractory sand levels show that the main difficulty of these levels within the molding process is intra-grain cracks, which spoils the alloy’s final product. The Early Triassic level in the Ghoznavi area has a high purity but the average grain size is below the steel molding standard. The Late Triassic to Early Jurassic levels in Alborz and Central Iran are oversize with grain cracks but can be fixed by the industrial refinery methods. The size of Early Cretaceous refractory sands of Firuzeh (Kopeh-Dagh) is below the standard molding process; it can be fixed by the washing and refinery methods. The systematic exploration methods show that all the studied silica-rich sand levels have an intra-grain collapse within the molding process. Final test shows that the Chirouk silica-rich levels can be used as refractory sand for cast and molding in the steel industry.
Mineral Processing
H. Shadi Naghadeh; M. Abdollahy; A. Khodadadi Darban; P. Pourghahramani
Abstract
The Esfordi phosphate concentrate mainly contains fluorapatite, monazite, and xenotime as rare earth element (REE) minerals, accounting for 1.5% of rare earth metals. The monazite and xenotime minerals are refractory and their decomposition is only possible at high temperatures. Thus mechanical activation ...
Read More
The Esfordi phosphate concentrate mainly contains fluorapatite, monazite, and xenotime as rare earth element (REE) minerals, accounting for 1.5% of rare earth metals. The monazite and xenotime minerals are refractory and their decomposition is only possible at high temperatures. Thus mechanical activation was used in the present work for this purpose. After 90 minutes of mechanical activation, the X-ray amorphization phase and the maximum BET surface area were increased to 93.4% and 8.4 m2/g, respectively. The Williamson-Hall plot indicated that the crystallite size was decreased and the lattice strain was increased as a function of the milling intensity. A volume-weighted crystallite size of 64 nm and a lattice strain of 0.9% were achieved from the mechanically activated sample for 90 minutes. The leaching efficiency of REEs with 32% nitric acid at 85 °C was increased from 25% for the initial sample to about 95% for the activated samples. The first stage reaction rate constants for La, Nd, and Ce were increased from 8 × 10-7, 9 × 10-7,and 6 × 10-7 for the initial sample to 1.3 × 10-3, 9 × 10-4, and 7 × 10-4 for the mechanically activated samples at 60 °C, respectively. Also the apparent activation energy for La, Nd, and Ce for the initial sample was found to be about 210, 231, and 229 kJ/mol, which were decreased to 120, 91, and 80 kJ/mol, respectively, after 20 minutes of mechanical activation in an argon atmosphere. The results obtained suggested mechanical activation as an appropriate pre-treatment method for dissolution of REEs from phosphate concentrates containing refractory REE minerals at a lower cost and a higher recovery rate.
M. Shenavar; M. Ataee-pour; M. Rahmanpour
Abstract
The uncertainty-based mine evaluation and optimization have been regarded as a critical issue. However, it has received less attention in the underground mines than in the open-pit mines due to the diversity of the underground mining methods, and the underground mining parameters' complexity. The grade ...
Read More
The uncertainty-based mine evaluation and optimization have been regarded as a critical issue. However, it has received less attention in the underground mines than in the open-pit mines due to the diversity of the underground mining methods, and the underground mining parameters' complexity. The grade and commodity price uncertainties play essential roles in mining projects. Mine planning by not incorporating these uncertainties is accompanied by risks. The evaluation and risk assessment of the mine plans is possible through evaluating the mineable reserve in the presence of such uncertainties. In the present work, we evaluate the effects of grade and commodity price uncertainties on the underground mining stope optimization and the resultant mineable reserve. In this regard, the stope boundary is studied both deterministically and stochastically in the presence of the grade and price uncertainties. For this purpose, in this work, we implement the conditional simulation in order to generate equally probable ore reserve models. Furthermore, we optimize the stope boundary using the floating-stope algorithm in each realization. Several decision support criteria including the 'mineable reserve,' 'metal-content,' 'profit,' and 'value-at-risk' are defined to assist the decision-maker in uncertain conditions. Finally, a procedure is defined in order to consider two types of uncertainty sources simultaneously in underground mining. It will guide the decision-maker toward the most appropriate stope boundary that best fits the mining company's requirements. The procedure is implemented in a bauxite mine, and the optimal stope boundary is determined concerning the different criteria.
S. Tabasi; H. Hassani; A.R. Azadmehr
Abstract
The present work was planned to evaluate the phytoextraction of metal mine tailings, Sarcheshmeh copper mine, SE of Iran, by the endemic plant species Medicago sativa L. (Alfalfa). In this pot experiment, we investigated the effects of seven amendments on the growth of alfalfa and uptaking metals from ...
Read More
The present work was planned to evaluate the phytoextraction of metal mine tailings, Sarcheshmeh copper mine, SE of Iran, by the endemic plant species Medicago sativa L. (Alfalfa). In this pot experiment, we investigated the effects of seven amendments on the growth of alfalfa and uptaking metals from the mine tailings and stream sediment of tailing dam surface. The mean metal concentrations in both the tailing and stream sediment increased in the order of Hg < Te < Ag < Re < Ge < In < Ga
Rock Mechanics
M. Hazrati Aghchai; P. Moarefvand; H. Salari Rad
Abstract
Displacements around a tunnel, occurring as a result of excavation, consist of the elastic and plastic parts. In this paper, we discuss the elastic part of displacements as a result of excavation, called net displacement. In general, the previous analytical solutions presented for determining the displacements ...
Read More
Displacements around a tunnel, occurring as a result of excavation, consist of the elastic and plastic parts. In this paper, we discuss the elastic part of displacements as a result of excavation, called net displacement. In general, the previous analytical solutions presented for determining the displacements around a circular tunnel in an elastic medium do not give the net displacements directly. The well-known Kirsch solution is the most widely used method for determining the induced stresses and net displacements around a circular opening in a biaxially-loaded plate of homogeneous, isotropic, continuous, linearly elastic material. However, the complete solution for obtaining the net displacements has not been presented or highlighted in the available literature. Using the linear elasticity, this paper reviews and presents three different analytical methods for determining the net displacements directly as well as induced stresses around a circular tunnel. The three solution methods are the Lame' method, airy stress function method, and complex variable method. The tunnel is assumed to be situated in an elastic, continuum, and isotropic medium in the plane strain condition. The solutions are presented for both the hydrostatic and non-hydrostatic in situ stresses in the 2D biaxial loading condition along with an internal pressure. Loading and unloading in tunneling occurring as a result of excavation and stress differences between the induced and initial ones are considered to evaluate the net displacements directly. Finally, some examples are given to demonstrate the complete solution and show the difference between the net elastic displacements as a result of excavation and total elastic displacements that are not real.
D. Alavi; S. Mohammadnejad; Seyed M. J. Koleini
Abstract
In this work, the mechanism of zinc hydroxide and ammine complexation in caustic and ammonia leaching is investigated by molecular modelling using the density functional theory method. The speciation of zinc complexes is defined based on the thermodynamic data and Pourbiax diagrams. The mechanism of ...
Read More
In this work, the mechanism of zinc hydroxide and ammine complexation in caustic and ammonia leaching is investigated by molecular modelling using the density functional theory method. The speciation of zinc complexes is defined based on the thermodynamic data and Pourbiax diagrams. The mechanism of Zn+2 complexation by hydroxide and ammine ligands is simulated by molecular modeling. The structure of reactants in the form of individual clusters is modelled using the density function theory. In order to compare the hydroxide and ammine species structures, the geometry studies are carried out as well. The ammoniacal salt effectiveness to improve the dissolution and stability of the ammine species is studied. The ligand single molecule interaction with a smithsonite molecule is done for a better understanding. Molecular modeling show that the zinc hydroxide species are more stable based on the higher reaction free energies. The reaction free energies decrease by adding the OH- and NH3 ions to the complexes from -30.12 kcal/mol to -16.943 kcal/mol, and -22.590 kcal/mol to 66.516 kcal/mol, respectively. The Zn-OH bonds are shorter than Zn-NH3, and the ammine species show more regular structures in comparison with the hydroxide structures. The change of free energies in the presence of ammoniacal salts indicate that the sulfate ions can significantly improve the dissolution of zinc oxide in ammonia. The smithsonite interaction with ammonia and hydroxide reveal that hydroxide ions lead to a higher interaction energy than ammonia (-36.396 vs. -28.238), which is consistent with the higher stability of hydroxide species. The results obtained well-explain the experimental results obtained before, and can be effectively used to optimize the alkaline leaching of zinc oxide ore.
Kamar Samir; Mohamed El-Sharkawi; Ahmed Niazy El-Barkooky; Mohamed Saleh Hassan Hammed
Abstract
The Precambrian rock assemblages of Umm Tawat area in the North Eastern Desert of Egypt have a distinctive ENE-trending exposure of Hammamat sediments (HS) between the Gebel Gattar granitic pluton and the volcanoclastic succession of Gebel El Dokhan. The present work applies the Landsat-8 data and image ...
Read More
The Precambrian rock assemblages of Umm Tawat area in the North Eastern Desert of Egypt have a distinctive ENE-trending exposure of Hammamat sediments (HS) between the Gebel Gattar granitic pluton and the volcanoclastic succession of Gebel El Dokhan. The present work applies the Landsat-8 data and image processing techniques such as spectral signature, principal component analysis, decorrelation stretch, and band ratios to map the various Precambrian rock units and the lithofacies of the HS and their geological contacts. The recognized mappable units of this assemblage are fully identified by their spectral signature, field verification, lineament analysis, and petrographic description. The resultant high-resolution lithological map based on the maximum likelihood algorithm demonstrates ten fully discriminated mappable units of younger granitoid and HS lithofacies units besides the Dokhan volcanics and metagabro-diorite rock units. The identified five HS lithofacies units are brownish gray conglomerate and sandstone HSf1, a green conglomerate with dominant volcanic fragments HSf2, fine-grained sediments of graywacke and silty-mudstone HSf3, interbedded conglomerates and siltstone with uranium enrichments related to the intrusive contact HSf4, and thermally metamorphosed pelitic sediments HSf5. Remote sensing techniques have been applied for the first time to reveal detailed facies variation of the Hammamat sediments of Umm Tawat. Finally, the results aforementioned above are imported to the Arc GIS database to update the geologic map with precise rock unit boundaries.
Exploitation
Blessing Olamide Taiwo; Oluwaseun Victor Famobuwa; Melodi Mbuyi Mata; Mohammed Sazid; Yewuhalashet Fissha; Victor Afolabi Jebutu; Adams Abiodun Akinlabi; Olaoluwa Bidemi Ogunyemi; Ozigi Abubakar
Abstract
The purpose of this research work is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo State, aggregate quarries. In addition, an Artificial Neural Network (ANN) model for granite profitability was developed. A structured survey questionnaire was ...
Read More
The purpose of this research work is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo State, aggregate quarries. In addition, an Artificial Neural Network (ANN) model for granite profitability was developed. A structured survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study includes granite marketing operations, royalty, production costs, and mine production information. In this study, the efficacy of granite fragmentation was assessed using the WipFrag software. The relationship between particle size distribution, blast design, blast efficiency, and uniformity index were analyzed using the WipFrag result. The optimum blast design was also identified and recommended for mine production. The result revealed that large burden distances result in bigger X50, X80, and Xmax fragmentation sizes. A burden distance of 2 m and a 2 m spacing were identified as the optimum burden and spacing. The finding revealed that blast mean size and 80% passing mesh size have a positive correlation. The result from this study indicated that the uniformity index has a positive correlation with blast efficiency and a negative correlation with maximum blast fragmentation size. The prediction accuracy of the developed models was evaluated using the coefficient of determination (R2), root mean square error (RMSE), and mean square error (MSE). The error analysis revealed that the ANN model is suitable for predicting quarry-generated profit.
Seyed M. Seyed Ghasemi; A. Azizi
Abstract
The leaching kinetics of a low-grade zinc oxide ore in different acid media was investigated with respect to the experimental variables including acid concentration, temperature, liquid to solid (L/S) ratio, and stirring speed. The results obtained showed that the leaching reagent concentration and the ...
Read More
The leaching kinetics of a low-grade zinc oxide ore in different acid media was investigated with respect to the experimental variables including acid concentration, temperature, liquid to solid (L/S) ratio, and stirring speed. The results obtained showed that the leaching reagent concentration and the reaction temperature exerted significant effects on the extraction of zinc, whereas the L/S ratio and stirring speed exhibited a relatively moderate effect on the leaching rate. The maximum leaching rate with inorganic acids was obtained to be 90.76%, while the maximum zinc recovery with citric acid was determined to be 88.68%. It was found that the zinc leaching process followed the kinetic law of the shrinking core model. It was distinguished that the dissolution rate was controlled by diffusion through the fluid film in the HNO3 medium with the activation energy of 4.38 kJ/mol, whereas when dissolution was performed in the presence of HCl, H2SO4, and citric acid, an intermediate process (i.e. a physico-chemical process) was the rate-controlling step.
Exploitation
B. Unver
Abstract
The prerequisite of maintaining an efficient and safe mining operation is the proper design of a mine by considering all aspects. The first step in a coal mine design is a realistic geometrical modelling of the coal seam(s). The structural features such as faults and folding must be reliably implemented ...
Read More
The prerequisite of maintaining an efficient and safe mining operation is the proper design of a mine by considering all aspects. The first step in a coal mine design is a realistic geometrical modelling of the coal seam(s). The structural features such as faults and folding must be reliably implemented in 3D seam models. Upon having a consistent seam model, the attributes such as calorific value, ash and moisture contents, volatile matter, and sulfur must be estimated in the block model. Considering the geotechnical and hydrogeological conditions, the most appropriate mine design strategy can be selected and implemented. Application of the above steps to three coal basins in Turkey are presented in this paper. The Soma-Eynez and Tunçbilek-Ömerler basins are the two most important lignite resources having an on-going production and prospect for future underground mining. Comprehensive 3D coal seam modelling is carried out at both basins. As both are extensively faulted due to tectonism, it is a challenging task to realistically model their structures. On the other hand, the Karapınar basin has a considerably different geological, structural, and coal measure rock conditions in comparison to the Eynez-Ömerler basin. The Karapınar basin is a relatively recently explored brown field site suitable mainly for surface mining. Coal seam(s) geometry and quality-related attributes certainly play the most important role for production planning and mining activities. The influence of the inherent characteristics of each site on the modelling and mine design strategy are also briefly discussed. This paper presents the fundamentals of coal seam modelling at various geological and structural conditions. It is believed that the methodology presented in this paper can be considered as a guiding example for a comprehensive 3D modelling and resource estimation of coal seams around the world.
F. Mohajer-Moghari; K. Seifpanahi Shabani; M. Karamouzian
Abstract
This researchdescribe wastewater pre-treatment that contaminated with Methylene Blue dye (MB) and Ni(II) ion by Athelia Bombacina fungus dead biomass (ABFDB). Researches finding on ABFDB characterization by SEM, XRD, CHNS and FT-IR analysis show that ABFDB can be used as efficient sorbent, because ABFDB ...
Read More
This researchdescribe wastewater pre-treatment that contaminated with Methylene Blue dye (MB) and Ni(II) ion by Athelia Bombacina fungus dead biomass (ABFDB). Researches finding on ABFDB characterization by SEM, XRD, CHNS and FT-IR analysis show that ABFDB can be used as efficient sorbent, because ABFDB cellular wall consist of Chitin, β-Glucan and Cellulose biopolymers, generally. Results show that removal of MB and Ni(II) ion by ABFDB sorbent is more than 86.41 and 66.2%, respectively. So, after parameters investigation of MB and Ni(II) ion sorption process by ABFDB, the response surface method was employed for optimization and study the interaction of operational parameters on the sorption of pollutants. This low-cost and natural environmental friendly biosorbent can be utilized for pretreatment process in the first step of wastewater treatment project.
F. Jamali; A.R. Arab Amiri; A. Kamkar Rouhani; A. Bahrami
Abstract
In any geophysical exploration, the final goal is to achieve an accurate image of the relevant underground property. In order to achieve this, the geophysical operation using the electrical resistivity and induced polarization (IP) methods is conducted to explore the sub-surface sulfide mineralization. ...
Read More
In any geophysical exploration, the final goal is to achieve an accurate image of the relevant underground property. In order to achieve this, the geophysical operation using the electrical resistivity and induced polarization (IP) methods is conducted to explore the sub-surface sulfide mineralization. Considering the mineralization evidence in the Kaboudan area near the Bardeskan city, first, geophysical surveying of the polymetallic deposit is carried out using the electrical resistivity and IP methods by employing the rectangle array in order to detect the electrical anomalies in the area. Then for delineation of the identified anomalies and investigation of the mineralization in the area, the 2D resistivity and chargeability cross-sections are prepared and interpreted with the help of the geological information. This geophysical survey in the area has led to the identification of several potential areas for mineralization. Then in order to obtain a detailed picture of the sub-surface mineralization and an overview of the in-depth mineralization distribution, a 3D modeling of the acquired data is made, and the results of this modeling are shown in 3D forms. The mineralization zones are identified in the studied area from their high chargeability values as well as the low to medium electrical resistivity amounts. This can be attributed to the metal mineralization and the presence of sulfide minerals in the mineralization zones. Mineralization in many places of the studied area is determined with an approximate east-west trend as well as somewhat varying the intensities of the electrical resistivity and chargeability amounts. The geological and drilling information obtained from the area confirm the interpretations.