Mineral Processing
I. Kursun Unver; M. Terzi
Abstract
Today coal is among the most important energy sources. In order to meet the world's energy demands, low-calorie lignite with a high ash content is generally used in the large capacity coal-fired thermal power plants. As a result of coal firing, wastes such as fly ash, slag, and flue gas are also produced. ...
Read More
Today coal is among the most important energy sources. In order to meet the world's energy demands, low-calorie lignite with a high ash content is generally used in the large capacity coal-fired thermal power plants. As a result of coal firing, wastes such as fly ash, slag, and flue gas are also produced. Subsequently, toxic trace elements within coal are transferred to wastes such as slag, fly ash, and flue gases. Large amounts of these, which are usually stored in collection ponds or stockpiles, are problematic in terms of environment. Although coal fly ash (CFA) has been utilized in construction and several other industries for decades, its current ratio of utilization is still quite limited. As an important fact, CFA also contains many valuable metals including germanium (Ge), gallium (Ga), vanadium (V), titanium (Ti), and aluminum (Al). In addtion, coal and CFA can be regarded as alternative sources of radioactive elements. Therefore, they also have a great potential in terms of the precious metals and trace elements they contain. In this study, the present literature on the distribution of trace elements in coal and coal ash during firing and ore preparation processes and their recovery possibilities with mineral processing practices are reviewed. While many research works on the subject clearly indicate that the large amounts of the ashes produced from firing of coal could be problematic in terms of environment, many studies and practices also show that coal combustion products also have a great potential in terms of the precious metals and trace elements.
Exploitation
S. Soltani-Mohammadi; A. Soltani; B. Sohrabian
Abstract
Due to the nature of the geological and mining activities, different input parameters in the grade estimation and mineral resource evaluation are always tainted with uncertainties. It is possible to investigate the uncertainties related to the measurements and parameters of the variogram model using ...
Read More
Due to the nature of the geological and mining activities, different input parameters in the grade estimation and mineral resource evaluation are always tainted with uncertainties. It is possible to investigate the uncertainties related to the measurements and parameters of the variogram model using the fuzzy kriging method instead of the kriging method. The fuzzy kriging theory has already been the subject of relatively various research studies but the main weak point in such studies is that the results of the fuzzy estimations are not used in decision-making and planning. A very common, but key, tool of decision-making for mining engineers is the tonnage-average grade models. Under conditions where measurements or/and variogram model parameters are tainted with uncertainties, the tonnage-average grade model will be uncertain as well. Therefore, it is necessary to use the fuzzy tonnage-grade model instead of the crisp ones, and the next analysis steps and decision-makings are done accordingly. In this paper, the computational principles of the fuzzy tonnage-average grade curve and a case study regarding its usage are presented.
F. Abbasi; M.H. Khosravi; A. Jafari; Ali Bashari; B. Alipenhani
Abstract
The instability of the roof and walls of the tunnels excavated in coal mines has always attracted the attention of the miners and experts in this field. In this work, the instability of the main tunnels of the mechanized Parvadeh coal mine in Tabas, Iran, at the intersection with coal seam is studied. ...
Read More
The instability of the roof and walls of the tunnels excavated in coal mines has always attracted the attention of the miners and experts in this field. In this work, the instability of the main tunnels of the mechanized Parvadeh coal mine in Tabas, Iran, at the intersection with coal seam is studied. The main tunnels of this mine show significant horizontal displacements due to the complex ground conditions and great depth. The behavior of the rock mass surrounding the tunnel is investigated using various experimental methods, and according to the results obtained, the surrounding rock mass has squeezing conditions. In order to analyze the stability of the main tunnels, a series of 2D and 3D numerical modelings are performed using the FLAC2&3D finite difference software, and the results obtained are compared with the actual displacement values recorded in the walls of the main tunnels of the mine. The analysis results show that the tunnels under study are unstable with a steel frame support, and therefore, the use of different support systems for the stabilization is investigated. The results of modeling different types of support systems show that the use of shotcrete instead of galvanized sheet (as strut) does not have a significant effect on the reduced displacements. Also although the installation of steel sets is very effective in preventing the displacement of the walls, due to the swelling problems in the tunnel bottom and the placement of the conveyor and haulage rail, it cannot be used in practice. Finally, the use of truss bolt has yielded good results, and it can be proposed as a new support system in these tunnels. In addition, the modeling results show that in case the coal seam is higher than the tunnel foot, less displacement will occur in the tunnel walls compared to the other cases. In other words, changing the tunnel level in the future excavations can help reduce the displacements.
Serhii Hryhorovych Nehrii; Tetiana Oleksandrivna Nehrii; Oksana Viktorivna Zolotarova; Valentyn Anatolyovich Glyva; Andrii Mykolaiovych Surzhenko; Oksana Mykolaivna Tykhenko; Nataliia Burdeina
Abstract
The studies of risk factors on which the safety of miners depends are relevant. These factors include temperature and air velocity within roadways, relative air humidity, dust, noise and vibration, lighting, clutter, limited working space, the difficulty of work, and the collapse of roof rocks. Their ...
Read More
The studies of risk factors on which the safety of miners depends are relevant. These factors include temperature and air velocity within roadways, relative air humidity, dust, noise and vibration, lighting, clutter, limited working space, the difficulty of work, and the collapse of roof rocks. Their greatest concentration is in the technological zones of longwalls, so it is important to determine the priority of taking into account the risk factors in certain zones for planning measures for labor protection in underground coal mining. Therefore, a matrix of priority of risk factors for technological zone longwalls is proposed. The matrix is based on a survey of experienced and well-informed scientists and engineers of coal mines (experts). Fifty experts are involved in the survey.The matrix assesses the priority of risk factors, and considers the technological zones of the longwalls for the planning labor protection measures. The zones of operation of the excavation machines and the end-sections of longwalls are defined as the most safety-critical. Less safety-critical, but also dangerous, are the zones of protection means and the zones of connection of the longwalls with the roadways. The level of a certain risk factor is determined for each zone. The highest priority should be given to the collapse of roofs, dust, clutter of the working space, and the severity of the miners' work. For each risk factor included in the matrix, the technical and organizational measures for labor protection are proposed to reduce the level of injuries for miners.
M. R. Samadzadeh Yazdi; M. Abdollahi; S. M. Mousavi; A. Khodadadi Darban
Abstract
Although bioleaching of chalcopyrite by thermophilic microorganisms enhances the rate of copper recovery, a high temperature accelerates iron precipitation as jarosite, which can bring many operational problems in the industrial processes. In this research work, the bioleaching of chalcopyrite concentrate ...
Read More
Although bioleaching of chalcopyrite by thermophilic microorganisms enhances the rate of copper recovery, a high temperature accelerates iron precipitation as jarosite, which can bring many operational problems in the industrial processes. In this research work, the bioleaching of chalcopyrite concentrate by the thermophilic Acidianus brierleyi was studied, and the microbial growth, copper dissolution, iron oxidation, and jarosite precipitation were monitored in different initial pH (pHi) values. Bacterial growth was greatly affected by pHi. While the bacterial growth was delayed for 11 days with a pHi value of 0.8, this delay was reduced to nearly one day for a pHi value of 1.2. Two stages of copper recovery were observed during all the tests. A high pHi value caused a fast bacterial growth in the first stage and severe jarosite precipitation in the later days causing a sharp decline in the bacterial population and copper leaching rate. The copper recoveries after 11 days were 25%, 78%, 84%, 70%, 56%, and 39% for the pHi values of 0.8, 1.0, 1.2, 1.3, 1.5, and 1.7, respectively. Sulfur and jarosite were the main residues of the bioleaching tests. It was revealed that the drastic effect of jarosite precipitation on the microbial growth and copper recovery was mainly caused by the ferric iron depletion from solution rather than passivation of the chalcopyrite surface. A slow precipitation of crystalline jarosite did not cause a passive chalcopyrite surface. The mechanisms of chalcopyrite bioleaching were discussed.
Exploitation
M. Mohseni; M. Ataei; R. Khaloo Kakaie
Abstract
Production planning in mineral exploitation should be undertaken to maximize exploited ore at a minimum unplanned dilution. Unplanned dilution reduction is among the ways to enhance the quality of products, and hence, reduce the associated costs, resulting in a higher profit. In this way, firstly, all ...
Read More
Production planning in mineral exploitation should be undertaken to maximize exploited ore at a minimum unplanned dilution. Unplanned dilution reduction is among the ways to enhance the quality of products, and hence, reduce the associated costs, resulting in a higher profit. In this way, firstly, all the parameters contributing to unplanned dilution in underground stopes and specifically the cut-and-fill stoping method are identified. Secondly, the parameters are weighed using the fuzzy-Delphi analytical hierarchy process. Thirdly, the most effective parameters are selected among the pool of effective parameters. Finally, in order to present a novel classification system for an unplanned dilution assessment, a new index called stope unplanned dilution index (SUDI) is introduced. SUDI represents the extent to which a cut-and-fill stope is susceptible to unplanned dilution. That is, having the value of this index, one may classify the cut-and-fill stopes into five groups according to robustness versus unplanned dilution: very strong, strong, moderate, weak, and very weak. SUDI is applied to10 stopes in different parts of Venarch Manganese Mines (Qom, Iran). In this way, a semi-automatic cavity monitoring system is implemented in the stopes. The regression analysis method shows that there is a relationship between SUDI and the actual unplanned dilution in equivalent linear overbreak/slough with a correlation coefficient (R2 = 0.8957).
Exploitation
F. Soltani; P. Moarefvand; F. Alinia; P. Afzal
Abstract
The traditional approaches of modeling and estimation of highly skewed deposits have led to incorrect evaluations, creating challenges and risks in resource management. The low concentration of the rare earth element (REE) deposits, on one hand, and their strategic importance, on the other, enhances ...
Read More
The traditional approaches of modeling and estimation of highly skewed deposits have led to incorrect evaluations, creating challenges and risks in resource management. The low concentration of the rare earth element (REE) deposits, on one hand, and their strategic importance, on the other, enhances the necessity of multivariate modeling of these deposits. The wide variations of the grades and their relation with different rock units increase the complexities of the modeling of REEs. In this work, the Gazestan Magnetite-Apatite deposit was investigated and modeled using the statistical and geostatistical methods. Light and heavy REEs in apatite minerals are concentrated in the form of fine monazite inclusions. Using 908 assayed samples, 64 elements including light and heavy REEs from drill cores were analyzed. By performing the necessary pre-processing and stepwise factor analysis, and taking into account the threshold of 0.6 in six stages, a mineralization factor including phosphorus with the highest correlation was obtained. Then using a concentration-number fractal analysis on the mineralization factor, REEs were investigated in various rock units such as magnetite-apatite units. Next, using the sequential Gaussian simulation, the distribution of light, heavy, and total REEs and the mineralization factor in various realizations were obtained. Finally, based on the realizations, the analysis of uncertainty in the deposit was performed. All multivariate studies confirm the spatial structure analysis, simulation and analysis of rock units, and relationship of phosphorus with mineralization.
V. Sarfarazi; K. Asgari
Abstract
In this investigation, the impact of confining pressure on the tensile strength obtained by point load test (PLT) is examined by particle flow code in two dimensions. In this regard, at first, a numerical model is calibrated using the Brazilian experimental test results. The tensile strength of the model ...
Read More
In this investigation, the impact of confining pressure on the tensile strength obtained by point load test (PLT) is examined by particle flow code in two dimensions. In this regard, at first, a numerical model is calibrated using the Brazilian experimental test results. The tensile strength of the model material is equal to 2.5 MPa. Secondly, PLT is performed on the numerical models with dimension of 15 cm × 50 cm. The rectangular models are tested by PLT under the presence of the confining pressure. The loading rate is 0.001 mm/min, confining that the pressure is changed with the 13 different values of 0 MPa, 0.002 MPa, 1MPa, 1.5 MPa, 2 MPa, 2.5 MPa, 3MPa, 3.5 MPa, 4 MPa, 5MPa, 6 MPa, 9 MPa, and 11 MPa. The results obtained show that the vertical tensile crack develops through the model under a low confining pressure, while several shear bands are developed in the models under a high confining pressure. The number of shear cracks is augmented by augmenting the confining pressure. Is(50) is the augment by augmenting the confining pressure. Also a new criterion is rendered in order to determine Is(50) based on the confining pressure.
Exploration
Vivek Sharma; Ravi Kumar Sharma; Pardeep Kumar
Abstract
In the present work, the empirical correlations between standard penetration test (SPT) N-values versus shear modulus (Gmax), and Peak Ground Acceleration (PGA) amplifications for sub-Himalayan district-Hamirpur, Himachal Pradesh (India) consisting of highly variable soil/rock strata at different ...
Read More
In the present work, the empirical correlations between standard penetration test (SPT) N-values versus shear modulus (Gmax), and Peak Ground Acceleration (PGA) amplifications for sub-Himalayan district-Hamirpur, Himachal Pradesh (India) consisting of highly variable soil/rock strata at different depths and across the terrain are evaluated. In the first stage, the N values obtained from SPTs are conducted in the field at 184 locations covering the studied area. The shear wave velocity for each soil profile of each borehole is calculated using the best available correlation in the literature. Further, the seismic response parameters are evaluated for these values using the ProShake software. Finally, the empirical relationships between maximum shear modulus and SPT value for different soil types are determined along with the ground motion amplifications. The amplification factor for Bhoranj sub-division varies from 1.40 to 2.60 and from 1.28 to 2.30, 1.20 to 2.10, 1.22 to 1.85, and 1.22 to 1.70 for Barsar, Nadaun, Hamirpur, and Sujanpur, respectively. The studied area consists of variable soil strata including clay, silt, sand, conglomerate, sandstone, and mixture thereof. The correlation between shear modulus and N value is coherent with already reported correlations for regular soils. The amplification factor reported for the sites plays an important role in planning infrastructure in the region. The correlations between maximum shear modulus (Gmax) and SPT value for hilly terrain comprising of highly complex geological formations such as mixed soil and fractured rocks presented in the study are not available in the research work carried out earlier.
A. Zolfaghari; N. Barzegar; M. Amini
Abstract
The gypsum mineralization occurred in the form of Satin Spar and Selenite in the south and southwest of the Fars province in the folded Zagros zone. In this region, Satin Spar mineralization has been formed as stratiform between the red marl and siltstone units of Late Miocene–Pliocene in Agha ...
Read More
The gypsum mineralization occurred in the form of Satin Spar and Selenite in the south and southwest of the Fars province in the folded Zagros zone. In this region, Satin Spar mineralization has been formed as stratiform between the red marl and siltstone units of Late Miocene–Pliocene in Agha Jari, Bakhtiari, and the Gachsaran formations. The reserves of Satin Spar in this area are at least 200,000 tons. Satin Spar due to its chatoyancy, has been able to distinguish itself from gypsum. This beautiful light phenomenon (chatoyancy) results from the regular and parallel arrangement of the Satin Spar fibers. The mineral was first identified by its physical properties, and then by the X-ray diffraction analysis. They were also examined by scanning electron microscopy for its structure and also the structure of fiber crystals and their optical properties. In order to examine the polishing condition of Satin Spar, several samples of this gemstone were also selected for fantasy and Cabochon cut. For the first time in Iran, the exploration of Satin Spar gemstone in the Fars region can be a model for its discovery in the other evaporative formations in the country.
R. N. Singh; A.S. Atkins; A.G. Pathan
Abstract
Ground water and surface water create a range of problems in lignite mining utilizing surface mining methods. In order to create a safe and economic mining environment, it is essential to carry out mining after dewatering the rock mass surrounding the lignite mines by advance dewatering techniques. This ...
Read More
Ground water and surface water create a range of problems in lignite mining utilizing surface mining methods. In order to create a safe and economic mining environment, it is essential to carry out mining after dewatering the rock mass surrounding the lignite mines by advance dewatering techniques. This paper briefly describes the ground water regimes including pressure gradients associated with various lignite deposits together with the practical examples of some important lignite deposits in the world. An effective method of controlling ground water in multi-aquifer environment in lignite deposits is to carry out rock mass dewatering using borehole pumps. This approach will help reducing the inflow rates of ground water to the mining excavation and also increase the effective strength of the overburden strata, thus, increasing the slope stability of the mining excavations. The main theme of this paper is to present a case history analysis of Thar lignite deposit in Sindh, Pakistan which has lignite reserves of some 193 billion tonnes. The paper presents a proposed method of dewatering the Thar prospect together with an assessment of the quality of aquifer water which can be used to improve the quality of life of people inhabiting in the Thar Desert area of Sindh, Pakistan. Water samples from three aquifers were collected from nine different locations and were analyzed in the laboratory for evaluating their physical and chemical characteristics. The test results indicated that the aquifer water can be classified as (sodium+ potassium) – chloride type water with a TDS range of 1000 to 20,000 mg/L. Consequently, this ground water is classified as brackish (saline water) requiring treatment before it can be utilised for domestic or industrial consumptions. It should be noted that this ground water does not contain heavy metals and toxic metals including arsenic, mercury and lead or cyanide. However, results indicate that groundwater from a few locations contained traces of silver (<4oppb)Owithozinc0<0.1ppm.
Farouk Sayed; Mohamed Saleh Hassan Hammed; Ahmed Gaber Shided; Ahmed Wagih Hussein
Abstract
The northwestern margin of the Red Sea is developed as several rift-related fault blocks. These fault blocks comprise two mega tectono-stratigrahicsuccessions; the Pre-riftsuccessioncould be sub-divided intothe Precambrian Basement rocks and theUpperCretaceous-Lower Eocenedeposits,whilst the Syn-rift ...
Read More
The northwestern margin of the Red Sea is developed as several rift-related fault blocks. These fault blocks comprise two mega tectono-stratigrahicsuccessions; the Pre-riftsuccessioncould be sub-divided intothe Precambrian Basement rocks and theUpperCretaceous-Lower Eocenedeposits,whilst the Syn-rift sequence includesthe Oligocene to Quaternary deposits. Lithologic differentiation of these rock units being encountered in thestudied area is accomplishedutilizing different remote sensing imagery enhancement techniques of the OLI data (Landsat-8) aided with field verification. Spectral signature analysis of different rock units, false-color composite, band-ratio, principle component analysis, minimum noise fraction, and independent component analysis are powerful tools in discrimination of the main rock units.The maximum likelihood distance supervised classificationtechnique is a robust tool in the identification of the contact between the different rock units. Radiometrically terrain corrected (RTC) DEM data extracted from PALSAR with a spatial resolution of 12.5m is utilized for the construction of a 3D perspective view image of the studied area. The present study offers a unique method for lithologic discrimination of main rock unitsutilizing OLI images, and introduces an enhanced high-resolution structural map of the studied area aided with field verification.
M. Eftekhari; A. Baghbanan; H. Hashemolhosseini
Abstract
The cracked Brazilian disc (CBD) specimen is widely used in order to determine mode-I/II and mixed-mode fracture toughness of a rock medium. In this study, the stress intensity factor (SIF) on the crack-tip in this specimen is calculated for various geometrical crack conditions using the extended-finite ...
Read More
The cracked Brazilian disc (CBD) specimen is widely used in order to determine mode-I/II and mixed-mode fracture toughness of a rock medium. In this study, the stress intensity factor (SIF) on the crack-tip in this specimen is calculated for various geometrical crack conditions using the extended-finite element method (X-FEM). This method is based upon the finite element method (FEM). In this method, the crack is modeled independently from the mesh. The results obtained show that the dimensionless SIFs for the pure modes I and II increase with increase in the crack length but the angle in which pure mode-II occurs decreases. For the mixed-mode loading, with increase in the crack angle, NI value decreases, while NII value increases to a maximum value and then decreases. The results obtained from the crack propagation examinations show that the crack angle has an important effect on the crack initiation angle. The crack initiation angle increases with increase in the crack angle. When the crack angle is zero, then the crack is propagated along its initial direction, whereas in the mixed-mode cases, the crack deviates from the initial direction, and propagates in a direction (approximately) parallel to the direction of maximum compressive load.
F. Razavi Rad; F. Mohammad Torab; A. Abdollahzadeh
Abstract
Considering the importance of Cd and U as pollutants of the environment, this study aims to predict the concentrations of these elements in a stream sediment from the Eshtehard region in Iran by means of a developed artificial neural network (ANN) model. The forward selection (FS) method is used to select ...
Read More
Considering the importance of Cd and U as pollutants of the environment, this study aims to predict the concentrations of these elements in a stream sediment from the Eshtehard region in Iran by means of a developed artificial neural network (ANN) model. The forward selection (FS) method is used to select the input variables and develop hybrid models by ANN. From 45 input candidates, 13 and 14 variables are selected using the FS method for Cadmium and Uranium, respectively. Considering the correlation coefficient (R2) values, both the ANN and FS-ANN models are acceptable for estimation of the Cd and U concentrations. However, the FS-ANN model is superior because the R2 values for estimation of Cd and U by the FS-AAN model is higher than those for estimation of these elements by the ANN model. It is also shown that the FS-ANN model is preferred in estimating the Cd and U population due to reduction in the calculation time as a consequence of having less input variables.
Rock Mechanics
A. Akrami; M. Hosseini; H. Sodeifi
Abstract
Hydraulic fracturing is used in the oil industry in order to increase the index of production and processing in the wells whose efficiencies have been dropped due to a long-term harvest or the rocks around the wells are of low permeability. Since the hydraulic fracturing operation is costly, it is of ...
Read More
Hydraulic fracturing is used in the oil industry in order to increase the index of production and processing in the wells whose efficiencies have been dropped due to a long-term harvest or the rocks around the wells are of low permeability. Since the hydraulic fracturing operation is costly, it is of special importance to the project managers to determine the pressure required for hydraulic fracturing and the suitable pump for this operation. The numerical modelings used in this work are aimed to investigate the fracture pressure in the carbonate rocks of Bangestan reservoir in Ahvaz, Iran, and to determine a relationship between the pressure required for fracturing and the confining pressure. In this work, unlike the other ones in this field, the developed numerical models had no initial crack or fracture, and the path of the crack and how the crack grows were studied without any pre-determination and presumption. The results obtained show that, in most cases, the crack starts from the central part of the sample, and is extended to its two ends. The crack extension direction was along the borehole axis inside the sample and perpendicular to the lateral stress. The numerical modeling results were well-consistent with the experimental ones, indicating that the pump capacity constraints in the laboratory could be overcome through numerical modelings.
Rock Mechanics
M. Lak; M. Fatehi Marji; A.R. Yarahamdi Bafghi; A. Abdollahipour
Abstract
The explosion process of explosives in a borehole applies a very high pressure on its surrounding rock media. This process can initiate and propagate rock fractures, and finally, may result in the rock fragmentation. Rock fragmentation is mainly caused by the propagation of inherent pre-existing fractures ...
Read More
The explosion process of explosives in a borehole applies a very high pressure on its surrounding rock media. This process can initiate and propagate rock fractures, and finally, may result in the rock fragmentation. Rock fragmentation is mainly caused by the propagation of inherent pre-existing fractures of the rock mass and also from the extension of the newly formed cracks within the intact rock due to the explosion. In this work, the process of extension of blast-induced fractures in rock masses is simulated using the discrete element method. It should be noted that, in this work, fracture propagation from both the rock mass inherent fractures and newly induced cracks are considered. The rock mass inherent fractures are generated using the discrete fracture network technique. In order to provide the possibility of fracture extension in the intact rock blocks, they are divided into secondary blocks using the Voronoi tessellation technique. When the modeling is completed, the fracture extension processes in the radial and longitudinal sections of a borehole are specified. Then a blast hole in an assumed rock slope is modeled and the effect of pre-splitting at the back of the blast hole (controlled blasting) on the fracture extension process in the blast area is investigated as an application of the proposed approach. The modeling results obtained show that the deployed procedure is capable of modeling the explosion process and different fracture propagations and fragmentation processes in the rock masses such as controlled blasting.
F. Hadadi; B. Jodeiri Shokri; M. Zare Naghadehi; F. Doulati Ardejani
Abstract
In this paper, we investigate a probabilistic approach in order to predict how acid mine drainage is generated within coal waste particles in NE Iran. For this, a database is built based on the previous studies that have investigated the pyrite oxidation process within the oldest abandoned pile during ...
Read More
In this paper, we investigate a probabilistic approach in order to predict how acid mine drainage is generated within coal waste particles in NE Iran. For this, a database is built based on the previous studies that have investigated the pyrite oxidation process within the oldest abandoned pile during the last decade. According to the available data, the remaining pyrite fraction is considered as the output data, while the depth of the waste, concentration of bicarbonate, and oxygen fraction are the input parameters. Then the best probability distribution functions are determined on each one of the input parameters based on a Monte Carlo simulation. Also the best relationships between the input data and the output data are presented regarding the statistical regression analyses. Afterward, the best probability distribution functions of the input parameters are inserted into the linear statistical relationships to find the probability distribution function of the output data. The results obtained reveal that the values of the remaining pyrite fraction are between 0.764% and 1.811% at a probability level of 90%. Moreover, the sensitivity analysis carried out by applying the tornado diagram shows that the pile depth has, by far, the most critical factors affecting the pyrite remaining
M. Esmailzadeh; A. Imamalipour; F. Aliyari
Abstract
The main aim of mineral exploration is to discover the ore deposits. The mineral prospectivity mapping (MPM) methods by employing multi-criteria decision-making (MCDM) integrate the exploration layers. This research work combines the geological, alteration, and geochemical data in order to generate ...
Read More
The main aim of mineral exploration is to discover the ore deposits. The mineral prospectivity mapping (MPM) methods by employing multi-criteria decision-making (MCDM) integrate the exploration layers. This research work combines the geological, alteration, and geochemical data in order to generate MPM in the Kighal-Bourmolk Cu-Mo porphyry deposit. The overlaying of rock units and fault layers was used to prepare the geological layer. The remote sensing and geological studies were employed in order to create an alteration layer. For generating the geo-chemistry layer, the stream sediment and lithogeochemical data were utilized. The lithogeochemistry layer was categorized into 9 ones including Cu, Mo, Bi, Te, the alteration indices (e.g. potassic, phyllic, and propylitic), and the geochemical zonality indices (e.g. Vz1 and Vz2). In addition, the stream sediment layer was categorized into 6 layers including Cu, Mo, Bi, Te, and the geochemical zonality indices (e.g. Vz1 and Vz2). By examination of the created layers, the consistency of the potential areas was verified by field surveys. Afterward, the weights were assigned to each layer considering the conceptual model of porphyry copper systems. Consequently, the layers were integrated by the fuzzy gamma operator technique, and the final MPM was generated. Regarding the generated MPM, 0.86% of the studied area shows a high potential porphyry mineralization, and these areas are proposed for the subsequent exploration drilling locations.
Vanshika Bhardwaj; Kanwarpreet Singh
Abstract
Natural hazards are naturally occurring phenomena that might lead to a negative impact on the environment and also on the life of living beings. These hazards are caused due to adverse conditions of weather and climate events, and also due to certain human activities that are harmful to the environment. ...
Read More
Natural hazards are naturally occurring phenomena that might lead to a negative impact on the environment and also on the life of living beings. These hazards are caused due to adverse conditions of weather and climate events, and also due to certain human activities that are harmful to the environment. Natural hazards include tsunamis, earthquakes, volcanic activity, landslides, etc. Among these natural hazards, landslides are among the most common natural hazards resulting in loss of life and property each year, leading to socio-economic impact; thus to avoid such losses, a comprehensive study of landslides is required. Landslides generally occur in hill region with steep slopes, heavy precipitation, loose shear strength of soil or due to many human activities like afforestation or construction activities. To resolve the problem of landslides in a hilly region, much research is conducted annually, providing a predicted landslide susceptibility zonation (LSZ) mapping of the area of research. The predicted landslide susceptibility maps are verified based on the past landslide data, an area under the curve (AUC), and other methods to provide an accurate map for landslide susceptibility in any area. In this study,93 research articles are reviewed for analysis of LSZ, and various observations are made based on the recent trends followed by various researchers over the world over the past ten years. The study can be useful for many researchers to practice their research on landslide susceptibility zonation.
M. Babaei; M. Abedi; Gh. H. Norouzi; S. Kazem Alilou
Abstract
This work presents the application of a geostatistical-based modeling approach for building up electrical properties acquired from a geophysical electrical tomography survey deployed for the purpose of porphyry Cu exploration at the Takht-e-Gonbad deposit, in the central domain of Iran. Electrical data ...
Read More
This work presents the application of a geostatistical-based modeling approach for building up electrical properties acquired from a geophysical electrical tomography survey deployed for the purpose of porphyry Cu exploration at the Takht-e-Gonbad deposit, in the central domain of Iran. Electrical data were inverted in 2D along several profiles across the main favorable zones of Cu-bearing mineralization to image electrical resistivity and chargeability properties. Upon tight spatial correlation of these geophysical properties and Cu mineralization (i.e. Cu grade), electrical models were constructed in 3D through geostatistical interpolation of 2D inverted data to provide insights into the geometry of probable ore mineralization. Anomalous geophysical zone that was coincident simultaneously with higher values of electrical chargeability and resistivity, was in accordance with the main body of high Cu grades generated from exploratory drillings. It reveals that the porphyry-type Cu mineralization system in this area has strong geophysical footprints controlled mainly by rock types and alterations. Note that these physical models supply valuable pieces of information for designing the layout of further exploratory drillings, constructing geological characteristics, separating non-mineralized form mineralized zones, and resource modeling.
M. Rezaie; A. Moradzadeh; A. Nejati Kalate
Abstract
One of the most remarkable basis of the gravity data inversion is the recognition of sharp boundaries between an ore body and its host rocks during the interpretation step. Therefore, in this work, it is attempted to develop an inversion approach to determine a 3D density distribution that produces a ...
Read More
One of the most remarkable basis of the gravity data inversion is the recognition of sharp boundaries between an ore body and its host rocks during the interpretation step. Therefore, in this work, it is attempted to develop an inversion approach to determine a 3D density distribution that produces a given gravity anomaly. The subsurface model consists of a 3D rectangular prisms of known sizes and positions and unknown density contrasts that are required to be estimated. The proposed inversion scheme incorporates the Cauchy norm as a model norm that imposes sparseness and the depth weighting of the solution. A physical-bound constraint is enforced using a generic transformation of the model parameters. The inverse problem is posed in the data space, leading to a smaller dimensional linear system of equations to be solvedand a reduction in the computation time. For more efficiency, the low-dimensional linear system of equations is solved using a fast iterative method such as Lanczos Bidiagonalization. The tests carried out on the synthetic data show that the sparse data-space inversion produces blocky and focused solutions. The results obtained for the 3D inversion of the field gravity data (Mobrun gravity data) indicate that the sparse data-space inversion could produce the density models consistent with the true structures.
Rock Mechanics
M. Hosseini; A. R. Khodayari
Abstract
The fracture mechanics examines the development and expansion of cracks in solids and how they affect the deformation of materials. The stress intensity factors at the tip of the crack and the critical stress intensity factors or fracture toughness of materials are considered in the relevant criteria. ...
Read More
The fracture mechanics examines the development and expansion of cracks in solids and how they affect the deformation of materials. The stress intensity factors at the tip of the crack and the critical stress intensity factors or fracture toughness of materials are considered in the relevant criteria. There are three main modes of applying forces to a crack including the tensile mode, shear mode, and mixed mode. Mode II fracture toughness, which is also called the shear mode, is an important parameter for investigating the rock behaviors. This parameter is used in many different areas such as mining and tunneling. Several methods have been proposed for determining the mode II fracture toughness. In this work, the Punch-True-Shear (PTS) test, standardized by the International Society for Rock Mechanics, was used to determine the fracture toughness while the confining pressure is present. The studied sample was the Lushan sandstone. In this work, notchd cylindrical specimens were prepared for PTS testing. In order to investigate the effect of confining pressure, some tests were conducted in the presence of the confining pressures of 0, 3, 5, 7, and 10 MPa, and to check the effect of temperature, some tests were conducted under 1, 5, and 10 heating and cooling cycles at 60, 100, and 150 ˚C as well as at the ambient temperature (25 °C). The confining pressure of 3 MPa was used in all the tests to examine the effect of temperature. The analyses results showed that with increase in the confining pressure, the mode II fracture toughness and the fracture energy would increase as well. By increasing the number of heating-cooling cycles, the mode II fracture toughness as well as the fracture energy would decrease leading to a reduced fracture toughness and energy for all the three modes of heating specimens up to 60, 100, and 150 ˚C. The effect of the number of heating-cooling cycles on reducing the fracture toughness and fracture energy was greater than the effect of temperature.
Exploitation
S. Tabasi; M. Kurdi; M. Bahrammanesh
Abstract
The objective of this work was to investigate the potential of three different kinds of Iranian peat and swamp soils as sources of organic matter (OM) in the Golestan Province, Northern Iran. Comparison of the peats was done in terms of the degree of humification on the von Post scale. Moreover, the ...
Read More
The objective of this work was to investigate the potential of three different kinds of Iranian peat and swamp soils as sources of organic matter (OM) in the Golestan Province, Northern Iran. Comparison of the peats was done in terms of the degree of humification on the von Post scale. Moreover, the X-ray fluorescence, X-Ray Diffractometry, and Fourier transform infra-red (FT-IR) techniques were used to investigate their mineralogical and geochemical properties. Also a method was tested for the sequential extraction of OM from Suteh peat, in which the following organic solvents were utilised in sequence: (I) ethyl ether, (II) ethanol, (III) 1,4-dioxane, and (IV) n-hexane; each extract was analysed by FT-IR spectroscopy, and the residue was used in the next phase. The results obtained indicated that OMOM extracted during each step was different; nevertheless, some spectral features such as those attributable to lignin, carbohydrate, phenol, wax, and fats were common to all phases. Major absorbance spectra were related to specific extraction steps, namely polysaccharide, proteins, alkyne, humic acids, esters, aldehydes, and cellulose.
S. Najafi Ghoshebolagh; A. Kamkar Rouhani; A.R. Arab Amiri; H. Bizhani
Abstract
As many gold deposits are associated with sulfide zones, and the direct exploration of gold deposits using the geophysical methods is very difficult due to its low amount in the sub-surface, the direct exploration of sulfide zones by the geophysical electrical resistivity and induced polarization (IP) ...
Read More
As many gold deposits are associated with sulfide zones, and the direct exploration of gold deposits using the geophysical methods is very difficult due to its low amount in the sub-surface, the direct exploration of sulfide zones by the geophysical electrical resistivity and induced polarization (IP) methods may lead to the indirect exploration of gold deposits. The gold deposit in the Kervian area is located in the Kurdistan shear zone, and is directly related to the sulfide, silica, and carbonate alteration units. After acquiring the resistivity and IP data, 2D modeling of the data is made in order to indirectly identify the gold-bearing zones in the surveyed area. As some of the identified geophysical anomalies indicating the sulfide zones may not be associated with the economic amounts of gold, in order to obtain an exploration pattern for the gold deposit in the studied area, a combination of the geophysical data modeling and interpretation results with the geological information and other exploratory data is used to reduce the uncertainty in identifying the gold-bearing zones in the studied area. Thus, modeling and interpretation of the geophysical data lead to identify the sub-surface anomalies as the locations of possible gold mineralization in the area, and then the drilling points are suggested in the area. Considering the geological studies and chemical analysis of the samples taken from the drilled boreholes crossing some of the geophysical anomalies, we conclude that the geophysical anomalies occurring inside the phyllite and carbonate units in the area can contain an economic amount of gold, and thus are recommended as the top priority for further exploration.
K. Seifpanahi Shabani; A. Vaezian
Abstract
In the environment, two main sources of heavy metals are natural backgrounds derived from parent rocks and anthropogenic contamination including mineral industrial wastes, tailing damps of sulfide mines, agrochemicals, and other outputs of industrial activities and factories. In this work, the physico-chemical ...
Read More
In the environment, two main sources of heavy metals are natural backgrounds derived from parent rocks and anthropogenic contamination including mineral industrial wastes, tailing damps of sulfide mines, agrochemicals, and other outputs of industrial activities and factories. In this work, the physico-chemical aspects of the magnetic Nano- mineral surfaces are studied in contrast to acid mine drainage using the multi- -analytical techniques XRF, XRD, BET, SEM, TEM, FT-IR, and AFM before and after adsorption of toxic elements. According to the results obtained, the FT-IR analysis presents a suitable curve, showing that the adsorption site of the sorption is filled with Ni(II) and Cd(II) ions. The results obtained show that the adsorption reaction is due to the high removal of the toxic elements from acid mine drainages.