Exploitation
S. Mohammadi; M. Ataei; R. Khaloo Kakaie; A. Mirzaghorbanali
Abstract
Immediate roof caving in longwall mining is a complex dynamic process, and it is the core of numerous issues and challenges in this method. Hence, a reliable prediction of the strata behavior and its caving potential is imperative in the planning stage of a longwall project. The span of the main caving ...
Read More
Immediate roof caving in longwall mining is a complex dynamic process, and it is the core of numerous issues and challenges in this method. Hence, a reliable prediction of the strata behavior and its caving potential is imperative in the planning stage of a longwall project. The span of the main caving is the quantitative criterion that represents cavability. In this paper, two approaches are proposed in order to predict the span of the main caving in longwall projects. Cavability index (CI) is introduced based on the hybrid multi-criteria decision-making technique, combining the fuzzy analytical network processes (ANP) and the fuzzy decision-making trial and evaluation laboratory (DEAMTEL). Subsequently, the relationship between the new index and the caving span is determined. In addition, statistical relationships are developed, incorporating the multivariate regression method. The real data for nine panels is used to develop the new models. Accordingly, two models based on CI including the Gaussian and cubic models as well as the linear and non-linear regression models are proposed. The performance of the proposed models is evaluated in various actual cases. The results obtained indicate that the CI-Gaussian model possesses a higher performance in the prediction of the main caving span in actual cases when compared to the other models. These results confirm that it is not possible to consider all the effective parameters in an empirical relationship due to a higher error in the prediction.
Mineral Processing
S. Ghasemi; A. Behnamfard; R. Arjmand
Abstract
The Sangan processing plant consists of four consecutive low-intensity magnetic separation steps with the same magnetic field intensity of 1300 Gauss for upgradation of iron ore. Hence, the iron ore minerals with lower magnetic susceptibility or interlocked with gangue minerals have no opportunity for ...
Read More
The Sangan processing plant consists of four consecutive low-intensity magnetic separation steps with the same magnetic field intensity of 1300 Gauss for upgradation of iron ore. Hence, the iron ore minerals with lower magnetic susceptibility or interlocked with gangue minerals have no opportunity for upgradation, and proceed to the tailing dam. Flotation is a powerful technique for upgradation of these materials, and it is the focus of this research work. A sample of 43.09% Fe and 12.1% FeO was taken from the tailings of second step of magnetic separation. The ore minerals of the sample were determined to be magnetite and hematite. A concentrate of 67% Fe and mass recovery of 50% was produced through the Davis tube test. A reverse flotation route was selected for upgradation of the sample. Fatty acid-based anionic collectors with trade names Alke and Dirol were used in the flotation experiments. The design of experiments was done by resolution IV fractional factorial design with nine factors at two levels per factor. A resolution IV design allows discrimination of all main effects and two-factor interactions. A concentrate of 53.92% Fe at a mass recovery of 60% was obtained at optimum flotation conditions of solid content 20%, pH 12, collector concentration of 1 kg/t, starch as depressant at a concentration of 5 kg/t, Alke/Dirol collector mass ratio of 30/70, conditioning time of 10 min., and concentration of Ca2+ as activator 1 kg/t. In this research work, the concept of natural depression of iron minerals in the reverse flotation was introduced and evaluated.
D. Mohammadi; K. Shahriar; D. Parsapour
Abstract
Tunneling in urban areas has always encountered many uncertainties, which if not considered in both analysis and design of the tunnels, will cause unexpected events during tunnel construction. Obstacles are among the most remarkable uncertainties in tunneling that affect the tunnel construction process. ...
Read More
Tunneling in urban areas has always encountered many uncertainties, which if not considered in both analysis and design of the tunnels, will cause unexpected events during tunnel construction. Obstacles are among the most remarkable uncertainties in tunneling that affect the tunnel construction process. The obstacles in urban tunneling include municipal utilities, surface and sub-surface structures, channels, wells, storages, and unknown cavities. Tehran Metro Line 7 in Iran is no exception to the rule, and has been grappling with the obstacles. In this work, we investigate the effect of the existence of wells and unknown cavities in the zone of influence of excavated tunnels by EPBM. The innovation of this research work is in the EPB tunnel design encountering wells and cavities that are as risky as the adjacent underground structure. In this work, we use a numerical simulation of the 3D finite difference method (FDM) so a series of parametric studies based on the numerical model are examined using the well and unknown cavity geometry and their location relative to the tunnel in alluvium. According to the results obtained, a major disturbance occurs in the near field of the well–tunnel, and the interaction problem happens in front of the tunnel face. The numerical outcome indicates that the most critical state of the ground settlement by EPBM happens when the well and unknown cavity are located in the face of the tunnel. It is also proved that the ground behavior is different for each part of EPBM such as ahead of the face, cutter head, shield, and segmental lining parts.
A. R. Ghanizadeh; A. Yarmahmoudi; H. Abbaslou
Abstract
Due to economical and environmental issues, utilization of mineral wastes, e.g. iron ore mine tailing (IOMT), as road materials can be recommended as a sustainable alternative. In the present study, mechanical properties, as well as resistance to freezing and thawing cycles (F-T) of low plasticity clay ...
Read More
Due to economical and environmental issues, utilization of mineral wastes, e.g. iron ore mine tailing (IOMT), as road materials can be recommended as a sustainable alternative. In the present study, mechanical properties, as well as resistance to freezing and thawing cycles (F-T) of low plasticity clay soil stabilized with different percentages of Portland cement (0, 6, 9, 12 and 15%) and different IOMT content (0, 10, 20, 30 and 40%) has been investigated. To this end, unconfined compressive strength (UCS), initial elastic modulus (E0), and indirect tensile strength (ITS) at different curing times of 7, 14, 18, and 56 days for different admixtures was determined to select optimum mix design for stabilization of clayey subgrade soil. This study shows that by increasing the percentage of cement, strength parameters such as UCS, E0, and ITS increases while increasing IOMT does not show a specific trend to increase strength parameters. Evaluation of strength parameters at different curing time showed that in short-term curing times (7 and 14 days), iron ore mine tailing has a positive effect on the strength parameters, while in long-term curing times (28 and 56 days), iron ore mine tailing has a negative effect on the strength parameters. In total, it was found that 12% of the Portland cement and 10 to 40% of the IOMT passes the UCS and F-T criteria for stabilization of low plasticity clay soils, while clay soil (without IOMT) requires at least 15% of Portland cement for stabilization.
Hassan Vafaie; Seyyed Mohammad Seyyed Alizadeh Ganji
Abstract
The present work is aimed to examine the elimination of cyanide ions from the wastewater derived from the Agh-Darreh gold mine using the Caro’s acid method. The response surface modeling is utilized to evaluate and optimize the influential parameters such as the sulfuric acid/hydrogen peroxide ...
Read More
The present work is aimed to examine the elimination of cyanide ions from the wastewater derived from the Agh-Darreh gold mine using the Caro’s acid method. The response surface modeling is utilized to evaluate and optimize the influential parameters such as the sulfuric acid/hydrogen peroxide ratio, pH, Caro’s acid concentration, and contact time on the elimination process. The results obtained indicate that the increase in the Caro’s acid concentration and contact time has a positive impact on the elimination of the free cyanide ions, while the increment in the weight ratio of sulfuric acid/hydrogen peroxide and pH higher than 9.5 demonstrate a negative impact. Also it is found that the quadratic effect of pH has the highest influence on the removal of cyanide ion, and the linear effect of the ratio of sulfuric acid/hydrogen peroxide has the lowest degree of importance. Additionally, the optimization process is carried out, and about 96.4% of the cyanide ions is eliminated from the wastewater under the optimal conditions including 2 g/L Caro’s acid concentration, 9.3 pH, 8 min contact time, and sulfuric acid to hydrogen peroxide (weight) ratio of 2.
Alireza Dolatshahi; Ali Nouri Qarahasanlou
Abstract
Engineers use various methods to evaluate the performance of concrete structures under dynamic loads, including numerical simulations, laboratory experiments, and field tests. By combining the results of these methods, the engineers can develop a comprehensive understanding of the behavior of concrete ...
Read More
Engineers use various methods to evaluate the performance of concrete structures under dynamic loads, including numerical simulations, laboratory experiments, and field tests. By combining the results of these methods, the engineers can develop a comprehensive understanding of the behavior of concrete structures under dynamic loads and use this information to design more resilient structures capable of withstanding these loads. In this work, four models of the concrete lining of the circular tunnel are simulated to investigate the effect of the pre-cracked in the tunnel's concrete lining under an internal explosion loading. A crack in three different locations at angles of 0, 45, and 90 on the horizontal axis of the tunnel is investigated and analyzed. The coupled Eulerian-Lagrangian method and the constitutive behavior, such as concrete damage plasticity for concrete and Drucker-Prager for soil, allows a more accurate simulation of the internal explosion loading scenario. The selection of Trinitrotoluene and the Jones-Wilkins-Lee equation of state for the explosive provides a realistic representation of the behavior of the explosive material. The modeling results show that in an internal explosion, by examining three different locations of a crack in the concrete, the occurrence of a crack in the crown of the tunnel is more critical than two crack locations. Hence, the existence of a crack with a length of 100 cm and a depth of 15 cm in the crown of the tunnel increases the tensile damage zone by 16.59% compared to the case where there is no crack.
Exploitation
H. Rahimi; O. Asghari; F. Hajizadeh; F. Meysami
Abstract
The purpose of this work is to compare the linear and non-linear kriging methods in the mineral resource estimation of the Qolqoleh gold deposit in Saqqez, NW Iran. Considering the fact that the gold distribution is positively skewed and has a significant difference with a normal curve, a geostatistical ...
Read More
The purpose of this work is to compare the linear and non-linear kriging methods in the mineral resource estimation of the Qolqoleh gold deposit in Saqqez, NW Iran. Considering the fact that the gold distribution is positively skewed and has a significant difference with a normal curve, a geostatistical estimation is complicated in these cases. Linear kriging, as a resource estimation method, can be problematic and gives an unrealistic gold grade. In order to check and correct the errors in the linear methods, the non-linear kriging method has been deployed. One of the applicant's non-linear estimation methods is Indicator Kriging (IK). The IK method converts grade values into binary units of 0 and 1 using multiple thresholds that can be selected by the number-size (N-S) fractal model. The N-S model identifies important and critical thresholds based on the grade distribution. In IK, the Multiple Indicator Kriging (Multiple IK) and Median Indicator Kriging (Median IK) methods could be involved due to the number of indicator thresholds. IK is not sensitive to high values. Here, we make a comparison between Median IK and Multiple IK as well as those with ordinary kriging (OK), which is a linear kriging method. Overall, we conclude that all of these methods are suitable for resource estimation among these methods, although the IK method is better for estimation in different categories of gold grades.
Rock Mechanics
Gh. H Ranjbar; K. Shahriar; K. Ahangari
Abstract
According to the wide application of segmental lining in mechanized tunneling, recognizing the behavior of segmental lining joints is important in tunnels designing. In the structural analysis of the tunnel segmental lining, segmental joints can be considered as elastic joints, and their stiffness characteristics ...
Read More
According to the wide application of segmental lining in mechanized tunneling, recognizing the behavior of segmental lining joints is important in tunnels designing. In the structural analysis of the tunnel segmental lining, segmental joints can be considered as elastic joints, and their stiffness characteristics are affected by the rotational, shear, and axial stiffness. The purpose of this work is to investigate the effect of the rotational, shear, and axial stiffness of segmental lining joints on the internal forces (bending moment and axial force)under the static conditions. For this purpose, a 3D numerical analysis was carried out using the ABAQUS software. The results obtained show that by increasing the rotational stiffness of the segmental joint, the bending moment increases, and for lower values of rotational stiffness, the bending moment variations are higher, while the axial force variations are very slight in comparison with the bending moment. By increasing the axial and shear stiffness of the segmental joint, changes of the bending moment and axial force in segmental lining are negligible.
Rock Mechanics
Dariush Kaveh Ahangaran; Kaveh Ahangari; Mosleh Eftekhari
Abstract
Blast damage on the stability of the slopes plays an important role in the profitability and safety of mines. Determination of this damage is also revealed in the widely used Hoek-Brown failure criterion. Of course, this damage is used as a moderating factor in this failure criterion, and its accurate ...
Read More
Blast damage on the stability of the slopes plays an important role in the profitability and safety of mines. Determination of this damage is also revealed in the widely used Hoek-Brown failure criterion. Of course, this damage is used as a moderating factor in this failure criterion, and its accurate determination is considered an important challenge in rock engineering. This study aims to investigate the effect of geological structures in blast damage factor using 3D discrete element modeling of two slopes with different directions of geological discontinuities. The dynamic pressure of the explosion is also simulated in three blastholes. To ensure the modeling results, other dynamic properties of the model have been selected based on the proven studies. An analytical analysis was conducted based on the failure zones (blast damage area), and quantitative and qualitative analyses were performed using the recorded PPV values during the blasting simulation. The results show that the geological discontinuities control, damp, and reduce blast damage. The expansion of blast damage is reduced by 75% along with the increase in rock mass strength, and the blast damage can expand up to 33 meters along with the decrease in strength. By reducing the distance of discontinuities, the role of discontinuities in damping becomes greater than other properties of the rock mass and the discontinuities further away from the blasting hole create more damping. The relation between the distance from the Hole and PPV values shows that for more realistic slope stability analysis results, the values of the damage factor in the Hoek-Brown failure criterion should be applied gradually and decreasingly in layers parallel to the slope surface.
Rock Mechanics
Vahab Sarfarazi; Hadi Haeri; Mohammad Fatehi Marji; Gholamreza Saeedi
Abstract
The mechanical behaviour of transversely isotropic elastic rocks can be numerically simulated by the discrete element method. The successive bedding layers in these rocks may have different mechanical properties. The aim of this research work is to investigate numerically the effect of anisotropy on ...
Read More
The mechanical behaviour of transversely isotropic elastic rocks can be numerically simulated by the discrete element method. The successive bedding layers in these rocks may have different mechanical properties. The aim of this research work is to investigate numerically the effect of anisotropy on the tensile behaviour of transversely isotropic rocks. Therefore, the numerical simulation procedure should be well-calibrated by using the conventional laboratory tests, i.e. tensile (Brazilian), uniaxial, and triaxial compression tests. In this study, two transversely isotropic layers were considered in 72 circular models. These models were prepared with the diameter of 54 mm to investigate the anisotropic effects of the bedding layers on the mechanical behaviour of brittle geo-materials. All these layers were mutually perpendicular in the simulated models, which contained three pairs of thicknesses 5 mm/10 mm, 10 mm/10 mm, and 20 mm/10 mm. Three different diameters for models were chosen, i.e. 5 cm, 10 cm, and 15 cm. These samples were subjected under two different loading rates, i.e. 0.01 mm/min and 10 mm/min. The results gained from these numerically simulated models showed that in the weak layers, the shear cracks with the inclination angles 0° to 90° were developed (considering 15° increment). Also there was no change in the number of shear cracks as the layer thickness was increased. Some tensile cracks were also induced in the intact material of the models. There was no failure in the interface plane toward the layer of higher strength in this research work. The branching was increased by increasing the loading rate. Also the model strength was decreased by increasing the model scale.
Mineral Processing
N. Khorasanizadeh; M. Karamoozian; H. Nouri-Bidgoli
Abstract
The bubble diameter effect on the bubble rise velocity profile in a flotation column is studied by the two-phase computational fluid dynamics (CFD) method. The simulations are done in the ANSYS® Fluent® software using a two-phase volume of fluid model. The computational domain is a square cross-section ...
Read More
The bubble diameter effect on the bubble rise velocity profile in a flotation column is studied by the two-phase computational fluid dynamics (CFD) method. The simulations are done in the ANSYS® Fluent® software using a two-phase volume of fluid model. The computational domain is a square cross-section column with a 10 cm width and a 100 cm height, in which air is interred as a single bubble from the lower part of the column by an internal sparger. An experimental test is also performed, the hydrodynamics parameters are recorded, and the simulated results are validated using the values obtained for the bubble rise velocity. The simulation results obtained indicate that CFD can predict the bubble rise velocity profile and its value in the flotation column with less than 5% difference in comparison with the experimental results. Then the simulations are repeated for the other initial bubble diameter in the bubbly flow regime in order to study the bubble diameter effect on the rise velocity profile. The results obtained demonstrate that the larger bubbles reach the maximum velocity faster than the small ones, while the value of maximum velocity decreases by an increase in the bubble diameter. These results can be used to improve the flotation efficiency.
B. Jodeiri Shokri; H. Dehghani; R. Shamsi; F. Doulati Ardejani
Abstract
This work presents a quantitative predicting likely acid mine drainage (AMD) generation process throughout tailing particles resulting from the Sarcheshmeh copper mine in the south of Iran. Indeed, four predictive relationships for the remaining pyrite fraction, remaining chalcopyrite fraction, sulfate ...
Read More
This work presents a quantitative predicting likely acid mine drainage (AMD) generation process throughout tailing particles resulting from the Sarcheshmeh copper mine in the south of Iran. Indeed, four predictive relationships for the remaining pyrite fraction, remaining chalcopyrite fraction, sulfate concentration, and pH have been suggested by applying the gene expression programming (GEP) algorithms. For this, after gathering an appropriate database, some of the most significant parameters such as the tailing particle depths, initial remaining pyrite and chalcopyrite fractions, and concentrations of bicarbonate, nitrite, nitrate, and chloride are considered as the input data. Then 30% of the data is chosen as the training data randomly, while the validation data is included in 70% of the dataset. Subsequently, the relationships are proposed using GEP. The high values of correlation coefficients (0.92, 0.91, 0.86, and 0.89) as well as the low values of RMS errors (0.140, 0.014, 150.301, and 0.543) for the remaining pyrite fraction, remaining chalcopyrite fraction, sulfate concentration, and pH prove that these relationships can be successfully validated. The results obtained also reveal that GEP can be applied as a new-fangled method in order to predict the AMD generation process.
Rahim Mortezaie; Seyed Davoud Mohammadi; Vahab Sarfarazi
Abstract
One of the most important tasks in conducting a laboratory research work is how to make the samples. The purpose of this research work is to create heterogeneous rock-like samples containing non-persistent notches. Regarding that, the molds with dimensions of 250 mm x 200 mm x 50 mm are made. A mixture ...
Read More
One of the most important tasks in conducting a laboratory research work is how to make the samples. The purpose of this research work is to create heterogeneous rock-like samples containing non-persistent notches. Regarding that, the molds with dimensions of 250 mm x 200 mm x 50 mm are made. A mixture of plaster and water with different mixing percentages is used to make the heterogeneous samples. Various techniques are also employed to create non-persistent notches on the samples. One of the methods to create a notch is to insert an aluminum blade into the groove of the mold, and finally, remove it after the plaster slurry has hardened. Due to the displacement of the blade and its tilting during slurring, the notches are out of the vertical position. In addition to the mentioned method, other methods such as water jet, cutting by thread, cutting by diamond wire cutting, cutting by rotary saw, and using hand saw are applied. Finally, using a hand saw to create a notch on the samples is chosen as the best method.
Alireza Dolatshahi; Hamed Molladavoodi
Abstract
The structure's response to the region's prevailing loading conditions guides the engineers in estimating the resilience of the structural materials and their reinforcement. One of the main concerns in designing rock structures is paying attention to the size effect phenomenon. The size effect influences ...
Read More
The structure's response to the region's prevailing loading conditions guides the engineers in estimating the resilience of the structural materials and their reinforcement. One of the main concerns in designing rock structures is paying attention to the size effect phenomenon. The size effect influences the nominal strength, brittleness, load capacity, stress intensity factor, the characteristics of the fracture process zone at the crack tip, and the way and path of crack propagation. Therefore, studying the size effect law will make a guideline for correct decision-making, design, and implementation of efficient support systems. As a comprehensive review, this work investigates specimen size effect on the rock's mechanical and fracture properties. With a comprehensive look at this issue, it explains the essential points that help the engineers design rock structures. During the investigations carried out in this work, it is shown that the specimen size affects the fracture and mechanical properties of the rock. The severity of this phenomenon depends on various factors such as the brittleness index, the shape of the notch or crack length, and the size of the particles that create the rock. In concrete, it depends on the additive boosting materials in the concrete.
Exploration
shirin Jahanmiri; Ali Aalianvari; Malihehe Abbaszadeh
Abstract
Groundwater inflow is a critical subject within the domains of hydrology, hydraulic engineering, hydrogeology, rock engineering, and related disciplines. Tunnels excavated below the groundwater table, in particular, face the inherent risk of groundwater seepage during both the excavation process and ...
Read More
Groundwater inflow is a critical subject within the domains of hydrology, hydraulic engineering, hydrogeology, rock engineering, and related disciplines. Tunnels excavated below the groundwater table, in particular, face the inherent risk of groundwater seepage during both the excavation process and subsequent operational phases. Groundwater inflows, often perceived as rare geological hazards, can induce instability in the surrounding rock formations, leading to severe consequences such as injuries, fatalities, and substantial financial expenditures. The primary objective of this research is to explore the application of machine learning techniques to identify the most accurate method of forecasting tunnel water seepage. The prediction of water loss into the tunnel during the forecasting phase employed a tree equation based on gene expression programming (GEP). These results were compared with those obtained from a hybrid model comprising particle swarm optimization (PSO) and artificial neural networks (ANN). The Whale Optimization Algorithm (WOA) was selected and developed during the optimization phase. Upon contrasting the aforementioned methods, the Whale Optimization Algorithm demonstrated superior performance, precisely forecasting the volume of water lost into the tunnel with a correlation coefficient of 0.99. This underscores the effectiveness of advanced optimization techniques in enhancing the accuracy of groundwater inflow predictions and mitigating potential risks associated with tunneling activities.
Exploration
Zohre Hoseinzade; Mohammad Hassan Bazoobandi
Abstract
Anomaly detection is the process of recognizing patterns in data that differ from the typical behavior. In geochemistry, this involves identifying hidden patterns and unusual components within the context of exploratory target identification. This issue is particularly significant when limited information ...
Read More
Anomaly detection is the process of recognizing patterns in data that differ from the typical behavior. In geochemistry, this involves identifying hidden patterns and unusual components within the context of exploratory target identification. This issue is particularly significant when limited information is available about the area of interest. Therefore, employing methods that can aid in the exploration process under such conditions and with limited data is highly valuable. In this study, the Deep-Embedded Self-Organizing Map (DE-SOM), an unsupervised deep learning approach, was used to detect geochemical anomalies. The research focused on identifying multivariate geochemical anomalies in the Moalleman region. After detecting the region's geochemical anomalies, the effectiveness of the algorithm was assessed alongside two other types of SOM algorithms. For this purpose, the prediction area plot was utilized, with the intersection points for DE-SOM, Batch SOM, and SOM were determined to be 0.75, 0.67, and 0.65, respectively. The multivariate geochemical anomaly in the Moalleman area shows a good correlation with known mineral occurrences and the andesite and dacite units. Based on this, it can be stated that the DE-SOM method is a useful tool for identifying anomalies and patterns associated with mineralization.
Ali Nejati Kalateh; Amin Roshandel kahoo
Abstract
We inverse the surface gravity data to recover subsurface 3D density distribution with two strategy. In the first strategy, we assumed wide density model bound for inverting gravity data and In the second strategy, the inversion procedure have been carried out by limited bound density. Wediscretize the ...
Read More
We inverse the surface gravity data to recover subsurface 3D density distribution with two strategy. In the first strategy, we assumed wide density model bound for inverting gravity data and In the second strategy, the inversion procedure have been carried out by limited bound density. Wediscretize the earth model into rectangular cells of constant andunidentified density. The number of cells is often greater than the number of observation points thus we have an underdetermined inverse problem. The densities are estimated by minimizing a cost function subject to fitting the observed data. The synthetic results show that the recovered model from the first strategy is characterized by broad density distribution around the true model, butthat of the second strategy is closer to true models.We carry out inversion of gravity data taken over chromite deposit located at Hormozgan providence of Iran for estimating of subsurface density distribution. The recovered model obtained from second strategy has appropriate agreement with previous study.
M. J. Babaei; M. A. Molaei; A. Dehghani
Abstract
This study aims to estimate the function of copper consumption using the Johansen approach in time series data, between 1991-2011 in Iran. The literature review of specialized consumption and demand functions shows factors influencing the consumption of copper including copper price variables, aluminum ...
Read More
This study aims to estimate the function of copper consumption using the Johansen approach in time series data, between 1991-2011 in Iran. The literature review of specialized consumption and demand functions shows factors influencing the consumption of copper including copper price variables, aluminum price as a substitute commodity, oil price as a complementary commodity, and industrialization intensity. For this purpose, raw data from the World Bank and International Copper Study Group, were used to extract the initial data needed for the current study, and then research variables were calculated and applied in a seasonal manner. In the next stage, using vector autoregressive, Johansen cointegration test, and vector error correction model, the existence of long-run cointegrated equilibrium relationship was surveyed by vector error correction model. Model estimation results show that there is a positive correlation between between industrialization intensity variable and the price of substitute product (Aluminum) and copper consumption ratio Moreover, there was a significant negative correlation between copper prices and complementary commodity price (Oil), during the review period in Iran. It should be noted that aluminum and copper prices can impact the copper consumption, and an awareness of this can influence making copper sales contracts domestically and abroad.
Exploitation
R. Ghasemi; B. Tokhmechi; G. Borg
Abstract
The known ore deposits and mineralization trends are important key exploration criteria in mineral exploration within a specific region. Fry analysis has conventionally been considered as a suitable method to determine the mineralization trends related to linear structures. Based upon literature sources, ...
Read More
The known ore deposits and mineralization trends are important key exploration criteria in mineral exploration within a specific region. Fry analysis has conventionally been considered as a suitable method to determine the mineralization trends related to linear structures. Based upon literature sources, to date, no investigation has been carried out that includes the Sensitivity Analysis of Feature's Number (SAFN), Sensitivity Analysis of Window Size (SAWS), and Sensitivity Analysis of Spatial Distribution (SASD) of Fry analysis related to mineral locations. In this work, SAFN, SAWS, and SASD are performed by moving several different sub-windows among the main window in order to identify the main trends of mineralization by Fry analysis in the Bavanat region of Iran, which is qualified by its regional and local faults pattern. Based upon our investigation, the effectiveness of the window size and the number of features on Fry analysis are 15-30%. The determined main trends of sub-windows increase, whereas its distribution function of Fry outputs is more similar to the distribution function of Fry outputs of the main window. Moreover, the directions of rose diagrams could be changed due to the edge effects of marginal features around the selected window. However, by selecting an appropriate window, this problem can be solved. Additionally, by an appropriate window selection, the most suitable regional situation is an area that contains the largest number of deposits with a similar metallogenetic origin. Based upon our investigation, the distribution function of the Fry outputs is the main factor that directly controls the identified mineralization pattern of the selected windows.
H. Mahdiyanfar
Abstract
Over the past two decades, the frequency domain (FD) of the geochemical data has been studied by some researchers. Metal zoning is one of the challenging subjects in the mining exploration, where a new scenario has been proposed for solving this problem in FD. Three mineralization areas including the ...
Read More
Over the past two decades, the frequency domain (FD) of the geochemical data has been studied by some researchers. Metal zoning is one of the challenging subjects in the mining exploration, where a new scenario has been proposed for solving this problem in FD. Three mineralization areas including the Dalli (Cu-Au), Zafarghand (Cu-Mo), and Tanurcheh (Au-Cu) mineralization areas are selected for this investigation. After transferring the surface geochemical data to FD, the geochemical signals obtained are filtered using the wavenumber-based filters. The high and moderate frequency signals are removed, and the residual signals are interpreted by the statistical method of principal component analysis (PCA). In order to discriminate the deep metal ore deposits, the principal factors of elemental power spectrum extracted by PCA are depicted in a novel diagram (PC1 vs. PC2). This approach indicates that the geochemical data in the Dalli and Zafarghand deep ore deposits have similar frequency behaviors. The Au, Mo, and Cu elements in these two areas are discriminated from the Au, Mo, and Cu mineralization elements of the Tanurcheh area as a deep non-mineralization zone in this diagram. This new criterion used for distinguishing the buried ore deposits and deep non-mineralization zones is properly confirmed by the exploratory deep drilled boreholes. The geochemical anomaly filtering demonstrates that the strong signatures of deep mineralization are associated with the low frequency geochemical signals at the surface, and the buried mineralization areas with weak surface anomaly can be identified using the geochemical FD data.
Mineral Processing
A.R. Ghasemi; A.R. Hasankhoei; E. Razi; Gh.A. Parsapour; S. Banisi
Abstract
Pelletizing plant of the Gol-E-Gohar mining and industrial company consists of a burner, a dry ball mill (6.2 m × 13 m), and an air separator. The ball mill consists of a 2 m-long drying and an 11 m-long grinding chambers. The iron ore concentrate is fed to the drying chamber by a feed chute. It ...
Read More
Pelletizing plant of the Gol-E-Gohar mining and industrial company consists of a burner, a dry ball mill (6.2 m × 13 m), and an air separator. The ball mill consists of a 2 m-long drying and an 11 m-long grinding chambers. The iron ore concentrate is fed to the drying chamber by a feed chute. It was found that when the feed moisture content increased from 1.3% to 3.5%, the throughput decreased by 12% (35 t/h) indicating a low performance of the dryer. Monitoring the wear rate of flights for a period of 12 months showed that the first 0.8 m (59%) length of the dryer length did not experience any wear. To overcome this problem, various feed chute designs with different geometries were simulated by the KMPCDEM© software. With the aim of arriving at a proper material trajectory, where the total length of the dryer is used, a new feed chute was selected. The simulation results indicated that if the height of the feed chute is increased from 1.60 to 2.26 m and the slope is increased from 45 to 48 degrees the material arrives at the first 0.48 m of the drying chamber. In this manner, the unused part of the drying chamber decreases from 59% to 36% of the length. After installation of the new feed chute during a period of three months, the throughput increased by 36 t/h.
B. Alipenhani; A. Majdi; H. Bakhshandeh Amnieh
Abstract
Determining the hydraulic radius of the undercut in the block caving method is one of the key issues in this method. The hydraulic radius is directly related to the minimum caving span. In this research work, the rock mass cavability is investigated using the UDEC and 3DEC software. Since the factors ...
Read More
Determining the hydraulic radius of the undercut in the block caving method is one of the key issues in this method. The hydraulic radius is directly related to the minimum caving span. In this research work, the rock mass cavability is investigated using the UDEC and 3DEC software. Since the factors affecting the cavability are very diverse and numerous, firstly, by 2D modeling in the UDEC software and examining the trend of changes in the minimum caving span, the most important factors including the depth, dip of the joint, number of joints, angle of friction of the joint surface, and joints spacing are selected for the final study. The variation trend of each variable is investigated by keeping the other variables constant (single-factor study) among various factors. In the second step, the minimum caving span for the five main factors and values is determined in the single-factor study using the SPSS software and the multivariate regression method. Then the power function of the minimum caving span is chosen based on the selected variables with a coefficient of determination of 0.76. In continuation, a simple 3D model is built from the undercut. A linear equation is achieved between the results of the 3D and 2D modeling results in similar conditions. In a model with certain conditions, using the equation obtained from the numerical method, the calculated hydraulic radius of caving is 22.5 m, which is close to the result obtained from the Laubscher's empirical method with the same condition (24 m).
Rock Mechanics
M. Rezaei; M. Asadizadeh
Abstract
Bedrock unconfined compressive strength (UCS) is a key parameter in designing thegeosciences and building related projects comprising both the underground and surface rock structures. Determination of rock UCS using standard laboratory tests is a complicated, expensive, and time-consuming process, which ...
Read More
Bedrock unconfined compressive strength (UCS) is a key parameter in designing thegeosciences and building related projects comprising both the underground and surface rock structures. Determination of rock UCS using standard laboratory tests is a complicated, expensive, and time-consuming process, which requires fresh core specimens. However, preparing fresh cores is not always possible, especially during the drilling operation in cracked, fractured, and weak rocks. Therefore, some attempts have recently been made to develop the indirect methods, i.e. intelligent predictive models for rock UCS estimation, which require no core preparation and laboratory equipment. This work focuses on the application of new combinations of intelligent techniques including adoptive neuro-fuzzy inference system (ANFIS), genetic algorithm (GA), and particle swarm optimization (PSO) in order to predict rock UCS. These models were constructed based on the collected laboratory datasets upon 93 core specimens ranging from weak to very strong rock types. The proposed hybrid model results were compared with each other, and the real data and multiple regression (MR) results. These comparisons were made using coefficient of correlation, mean of square error, mean of absolute error, and variance account for indices. The comparison results proved that the ANFIS-GA combination had a relatively higher accuracy than the ANFIS-PSO combination, and both had a higher capability than the MR model. Furthermore, the ANFIS-GA and ANFIS-PSO model results were completely in accordance with the UCS laboratory test, and they were more accurate than the previous single/hybrid intelligent models. Lastly, a parametric study of the suggested models showed that the density and Schmidt hammer rebound had the highest influence, and porosity had the lowest influence on the output (UCS).
Amir Mohammad Nasrollahzadeh Bafti; Mohammad Jahani Chegeni; Ahmad Moghooeinejad; Zahra Manafi
Abstract
Flotation is the most important method for processing sulfide copper ores. Due to the high cost and environmental hazards caused by the chemical reagents used in this process (collectors, frothers, pH regulators, depressants, etc.), the possibility of replacing all these reagents or at least some of ...
Read More
Flotation is the most important method for processing sulfide copper ores. Due to the high cost and environmental hazards caused by the chemical reagents used in this process (collectors, frothers, pH regulators, depressants, etc.), the possibility of replacing all these reagents or at least some of them are of special importance through environmentally friendly methods such as bio-flotation using halophilic bacteria. These bacteria have the ability of growth and proliferation in salty media and relatively neutral pHs such as sea salty water. In this research work, the four types of halophilic bacteria Halobacillus sp., Alkalibacillus almallahensis, Marinobacter sp., and Alkalibacillus sp. are studied to replace frothers (MIBC and F7240), depressant (sodium metabisulfite), and pH regulator (lime) in sulfide copper flotation using a Denver laboratory flotation cell. The results obtained indicate that each of the four types of bacteria mentioned above along with collectors (gasoil, Z11, and C7240) as the only chemical reagents (bio-flotation + collector) can depress pyrite better than the bacteria-free mode (flotation + all chemical reagents). Iron recovery in tailings in the standard flotation test is 46.8%, which is, respectively, increased to 91.9%, 74.5%, 70.3%, and 76.9% using the halophilic bacteria of Halobacillus sp., Alkalibacillus almallahensis, Marinobacter sp., and Alkalibacillus sp. On the other hand, the recovery of chalcopyrite using the bio-flotation method is lower than its recovery using the flotation method. Copper recovery in the concentrate in the standard flotation test is 89.1%, which is reached to 58.8%, 71.4%, 62.5%, and 69.4%, respectively, using the above bacteria in the bio-flotation method.
Environment
Asghar Azadehranjbar; Shahrzad khoramnejadian; Saeidreza Asemi Zavareh; Alireza Pendashteh
Abstract
Mining and minerals extraction and purification are critical in today’s world. However, these processes may have negative consequences on the environment. Xanthates which are essential in the floatation process are found to be significant polluting chemicals. In this manuscript, the effect of different ...
Read More
Mining and minerals extraction and purification are critical in today’s world. However, these processes may have negative consequences on the environment. Xanthates which are essential in the floatation process are found to be significant polluting chemicals. In this manuscript, the effect of different parameters on the recovery of lead from Nakhlak lead mine was investigated considering the impact of used chemicals on the surrounding environment including air, soil and native plant species. The reason for this investigation was to achieve the optimal conditions for the minimum consumption of xanthates and other chemicals. The optimal recovery was obtained in the presence of xanthate (1 kg/t) and sodium silicate (0.4 kg/t). In addition, MIBC showed to be more efficient in the floatation process. Furthermore, it was observed that higher xanthate contents are required for the floatation of large particles. Therefore, smaller particles of feed can decrease xanthate consumption. A particle size of 100 µm showed the best floatation recovery with the least xanthate requirement.