Exploitation
P. Afzal
Abstract
Finding a proper estimation method for ore resources/reserves is important in mining engineering. The aim of this work is to compare the Ordinary Kriging (OK) and Advanced Inverse Distance Squared (AIDS) methods based on the correlation between the raw and estimated data in the East-Parvadeh coal deposit, ...
Read More
Finding a proper estimation method for ore resources/reserves is important in mining engineering. The aim of this work is to compare the Ordinary Kriging (OK) and Advanced Inverse Distance Squared (AIDS) methods based on the correlation between the raw and estimated data in the East-Parvadeh coal deposit, central Iran. The variograms and anisotropic ellipsoids are calculated to estimate the ash and sulfur distributions by the IDS and OK methods. The results obtained by these techniques show that their correlation coefficients are similar for the raw and estimated data. However, the statistical parameters obtained by the AIDS method are better based on the ash and sulfur means, although the variance of these variables is lower according to the OK method. The results obtained indicate that the AIDS method yields more reliable results than the OK method.
Exploitation
H. Shahsavani
Abstract
Recently, the non-destructive methods have become of interest to the scientists in various fields. One of these method is Ground Penetration Radar (GPR), which can provide a valuable information from underground structures in a friendly environment and cost-effective way. To increase the signal-to-noise ...
Read More
Recently, the non-destructive methods have become of interest to the scientists in various fields. One of these method is Ground Penetration Radar (GPR), which can provide a valuable information from underground structures in a friendly environment and cost-effective way. To increase the signal-to-noise (S/N) ratio of the GPR data, multi-fold acquisition is performed, and the Common-Mid-Points (CMPs) are acquired. Compared to the traditional CMP method, which is applied to a CMP, the Common-Reflection-Surface (CRS) method is introduced for seismic data processing considering the neighboring CMPs. In addition, instead of a point on the reflector, CRS assumes that the reflector is part of a circle. With these two characteristics, CRS produces a stack section with a high S/N ratio. The Common-Diffraction-Surface (CDS) method, which is a simplified version of CRS, enhances the diffractors related to the underground anomalies like pipeline, flume, and caves. We apply the CDS stack method on a multi-fold GPR data and compare it to the CRS results. These results show that the CDS method can provide a high S/N ratio stack section compared to the traditional CMP method.
M. Jahani Chegeni; S. Kolahi
Abstract
The number of lifters in the liner of ball mills and the mill rotation speed are among the most significant factors affecting the behavior of grinding charge (balls) and their motion trajectory, and consequently, the comminution mechanism in these mills. In this research, in order to find a suitable ...
Read More
The number of lifters in the liner of ball mills and the mill rotation speed are among the most significant factors affecting the behavior of grinding charge (balls) and their motion trajectory, and consequently, the comminution mechanism in these mills. In this research, in order to find a suitable range for the number of lifters in the liner of ball mills, the DEM method is utilized. Initially, a pilot-scale ball mill with dimensions of 2.0 m × 1.11 m without any lifter is simulated. Afterwards, by adding, respectively, 1, 2, 4, 8, 16, 20, 26, 30, and 32 cuboid lifter(s) with dimensions of 2 m × 5 cm × 5 cm, nine other separate simulations are performed. The influences of the number of cuboid lifters on the two new factors introduced here, namely ‘head height’ (HH) and ‘impact zone length’ (IZL) at various mill speeds, that is, 70% and 80% of its critical speed (CS) are investigated. The results indicate that in order to find a suitable range for the number of lifters in the liner of ball mills, it is necessary to consider these two parameters simultaneously as the criteria for selecting the appropriate range, That is, liners that simultaneously produce both a higher HH and a greater IZL are more suitable for use in the industry. The results also demonstrate that the suitable range for the number of cuboid lifters in the liner of ball mills is between 16 and 32, which field research on the ball mills of three different plants in the industry confirms the accuracy of the results obtained in this research. Unlike the previous research works, it has now been shown that the number of ball mill lifters does not only depend on the diameter of the mill but also depends on the width, height, angle of the lifter, and generally on the type of lifter.
D. Mohammadi; R. Mikaeil; J. Abdollahei Sharif
Abstract
The blasting method is one of the most important operations in most open-pit mines that has a priority over the other mechanical excavation methods due to its cost-effectiveness and flexibility in operation. However, the blasting operation, especially in surface mines, imposes some environmental problems ...
Read More
The blasting method is one of the most important operations in most open-pit mines that has a priority over the other mechanical excavation methods due to its cost-effectiveness and flexibility in operation. However, the blasting operation, especially in surface mines, imposes some environmental problems including the ground vibration as one of the most important ones. In this work, an evaluation system is provided to study and select the best blasting pattern in order to reduce the ground vibration as one of the hazards in using the blasting method. In this work, 45 blasting patterns used for the Sungun copper mine are studied and evaluated to help determine the most suitable and optimum blasting pattern for reducing the ground vibration. Additionally, due to the lack of certainty in the nature of ground and the analyses relating to this drilling system, in the first step, a combination of the imperialist competitive algorithm and k-means algorithm is used for clustering the measured data. In the second step, one of the multi-criteria decision-making methods, namely TOPSIS (Technique for Order Performance by Similarity to Ideal Solution), is used for the final ranking. Finally, after evaluating and ranking the studied patterns, the blasting pattern No. 27 is selected. This pattern is used with the properties including a hole diameter of 16.5 cm, number of holes of 13, spacing of 4 m, burden of 3 m, and ammonium nitrate fuel oil of 1100 Kg as the most appropriate blasting pattern leading to the minimum ground vibration and reduction of damages to the environment and structures constructed around the mine.
Sina Ghasemi; Sima Mohammadnejad; Mohammad Reza Khalesi
Abstract
The adsorption of gold and copper cyanide complexes on the activated carbon is investigated using the Density Functional Theory (DFT). In order to represent the activated carbon, two fullerene-like model (presenting structural defect sites) and a simple graphene layer containing different functional ...
Read More
The adsorption of gold and copper cyanide complexes on the activated carbon is investigated using the Density Functional Theory (DFT). In order to represent the activated carbon, two fullerene-like model (presenting structural defect sites) and a simple graphene layer containing different functional groups (presenting chemical active sites) are employed. The structural defect sites show a much lower adsorption tendency toward all the cyano complexes comparing to the chemical active sites. The interaction energy for all of the complexes with structural defect sites (concave) is very low. However, the graphene layer with unsaturated active sites displays the highest level of interaction almost for all the complexes except Cu(CN)4-3. The effect of oxygen functional groups on the graphite edges shows a crucial role in the selectivity of gold adsorption over copper complexes. It has increased adsorption energy for Cu(CN)2- in the presence of OH and COOH, and has decreased adsorption energy for Au(CN)2- by OH and increased by COOH. The study results elucidate the lower selectivity for adsorption of gold over copper cyanides by high oxygen content activated carbon. The energy levels of the HOMO and LUMO orbitals show adsorption of unpaired cyanide anions on the activated carbon surface occurs by electron transfer from the complex to the adsorbent and adsorption onto the activated carbon edges by transferring electrons from the absorbent to the complex. The result has clearly demonstrated that the functional groups increase the adsorption tendency for both the gold (only COOH) and copper complexes (OH and COOH) but deteriorate the selectivity of gold over copper cyanides.
Exploration
Samaneh Barak; Ali Imamalipour; Maysam Abedi
Abstract
The Sonajil area is located in the east Azerbaijan province of Iran. According to studies on the geological structure, the region has experienced intrusive, subvolcanic, and extrusive magmatic activities, as well as subduction processes. As a result, the region is recognized for its high potential for ...
Read More
The Sonajil area is located in the east Azerbaijan province of Iran. According to studies on the geological structure, the region has experienced intrusive, subvolcanic, and extrusive magmatic activities, as well as subduction processes. As a result, the region is recognized for its high potential for mineralization, particularly for Cu-Au porphyry types. The main objective of this research work is to utilize the fuzzy gamma operator integration approach to identify the areas with high potential for porphyry deposits. To carry out this exploratory approach, it is necessary to investigate several indicator layers including geological, remote sensing, geochemical, and geo-physical data. The analysis reveals that the northeastern and southwestern parts of the Sonajil region exhibit a greater potential for porphyry deposits. The accuracy of the resulting Mineral Potential Map (MPM) in the Sonajil region was evaluated based on data from 20 drilled boreholes, which showed an agreement percentage of 83.33%. Due to the high level of agreement, certain locations identified in the generated MPM were recommended for further exploration studies and drilling.
Mineral Processing
R. Ahmadi; E. Ravanasa; Y. Mirzapour
Abstract
In this work, adsorption of the potassium amyl xanthate collector on the pure chalcopyrite surface was studied by applying atomic force microscopy (AFM). The adsorption experiments were carried out at different concentrations of the collector and at diverse pH values in the presence or absence of exterior ...
Read More
In this work, adsorption of the potassium amyl xanthate collector on the pure chalcopyrite surface was studied by applying atomic force microscopy (AFM). The adsorption experiments were carried out at different concentrations of the collector and at diverse pH values in the presence or absence of exterior ions. The changes occurring in the surface morphology of chalcopyrite due to the collector adsorption were evaluated by measuring the contact angle of the collector and its surface coating. According to the 3D images obtained by AFM, an increase in the pH value from 7.5 to 9.5 at two concentrations of 25*10-3 and 50*10-3 g/ton of the collector would increase the number of particles adsorbed on the surface, improve the adsorption morphology, and reduce the contact angle. Moreover, at a constant pH value, increasing the collector would result in the proliferation of contact angles as well as a relative increase in the number of particles. By comparing the morphological surface changes in the tap and distilled water samples, applying tap water, owing to the presence of Cu2+ ions and activation of the surface through the production of CuS, the quality and quantity of adsorption would be increased. The use of tap water not only can account for an appropriate coating by the collector but also causes to reduce the consumption of collector for at least 50%.
Mineral Processing
H. Jafari; H. Abdollahi; M. Gharabaghi; A.A. Balesini
Abstract
In this research work, solvent extraction and stripping of zinc ions from a Zn-Mn-Cd-bearing solution was investigated using D2EHPA as the extractant in a chloride medium. The efficiency of the extraction and stripping stages was evaluated separately, and different parameters such as the pH, extractant ...
Read More
In this research work, solvent extraction and stripping of zinc ions from a Zn-Mn-Cd-bearing solution was investigated using D2EHPA as the extractant in a chloride medium. The efficiency of the extraction and stripping stages was evaluated separately, and different parameters such as the pH, extractant concentration, reaction temperature, and contact time were studied. Based on the results obtained, 97% of zinc, 14% of manganese, and 3% of cadmium were extracted at pH = 2.5, 10% (v/v) of D2EHPA, and 40 °C from the solution containing 5 g L-1 of each metal ion. The stripping isotherms of zinc, manganese, and cadmium at different pH values showed that manganese and zinc were stripped at two different pH values. Thus more than 70% of manganese and more than 90% of zinc were stripped at pH = 2.5 and pH = 0.5, respectively. Kinetic studies indicated that the extraction and stripping of zinc in the first 0.5-1 minute was high. The McCabe–Thiele diagrams showed that two stages of extraction and two stages of stripping in the continuous counter-current flow condition were adequate to separate zinc from Mn and Cd. The dominant Zn species extracted by D2EHPA was ZnCl+, and the values for the thermodynamic parameters ΔHo, ΔSo, and ΔGo were 25.65 kJ mol−1, 79.20 J K−1 mol−1, and 0.86 kJ mol−1, respectively, which showed that the reaction was endothermic at equilibrium.
Rock Mechanics
Amirhossein Naseri; Behnam Maleki; Tohid Asheghi Mehmandari; Amin Tohidi; Ahmad Fahimifar
Abstract
The present study delves into investigating the impact of sample size and geometry on the mechanical behavior of rock and concrete. More specifically, it examines factors including Uniaxial Compressive Strength (UCS), Elastic Modulus (E), and Pressure Wave Velocity (Vp). Results indicated a notable correlation ...
Read More
The present study delves into investigating the impact of sample size and geometry on the mechanical behavior of rock and concrete. More specifically, it examines factors including Uniaxial Compressive Strength (UCS), Elastic Modulus (E), and Pressure Wave Velocity (Vp). Results indicated a notable correlation between the dimensions and morphology of the specimens with these properties. All tests were conducted at a uniform loading rate of 0.002 mm/s. According to the outcomes, the effect of sample size and shape on UCS for concrete is more predictable than for rock. The increase in the sample size led to an initial increase followed by a decline in the UCS values of the rocks. Furthermore, the concrete typically showed a drop in the UCS values as sample size increased. The UCS and E values rose at first before falling, suggesting the existence of a sample size with maximum UCS. The Vp values of the prismatic rock and concrete samples continually grew. After attaining their optimum strength, the prismatic samples showed greater degrees of flexibility and ductility compared to cylindrical ones because of post peak behavior. This suggests that prismatic samples, with their less slender geometry and reduced tendency for brittle behavior, are deemed more suitable for UCS testing. These results can improve the accuracy of assessing the mechanical properties of tunneling materials, particularly those used in subsurface construction in urban roads and highways.
Rock Mechanics
Sadegh Amoun; Hamid Chakeri
Abstract
This study is an attempt to design and manufacture a tunnel boring machine (TBM) simulator to better understand the interaction between soil and cutting tools, due to the lack of an accepted method for this issue. In this paper, Sahand Soil Abrasion Test (SSAT) is introduced, which is built by the Sahand ...
Read More
This study is an attempt to design and manufacture a tunnel boring machine (TBM) simulator to better understand the interaction between soil and cutting tools, due to the lack of an accepted method for this issue. In this paper, Sahand Soil Abrasion Test (SSAT) is introduced, which is built by the Sahand University of Technology. The experimental and real results of tool wear are presented. The results firstly demonstrate that the cutting tools wear in the coarse-grained soils can be less than in the fine-grained ones in the real conditions. However, in the soils with fine grains higher than 10%, the wear of cuttings tools increase in the laboratory condition when grading parameters increase. In soils with fine grains less than 10%, the wear of tools decreases by increasing the grading parameters. Also the results reveal that the coefficient of gradation depend on the amount of silt and clay in the soil samples. The investigations show that sorting is another good criterion for investigating the power of soil abrasively. Furthermore, it indicates that the cutting tools wear increases when the moisture content of the soil structure in the dense condition approaches the optimal moisture content. Finally, the results indicate that the wear and torque of the cutterhead could be reduced by 58% and 34%, respectively, when the excavated materials have the appropriate conditioning.
G. Jozanikohan; M. Nosrati Abarghooei; H. Sedighi
Abstract
The most extensive Iranian coal-bearing basin is located in an area of 30000 km2, situated approximately 75 km from the Tabas county, south Khorasan Province, Iran. In this work, the Tabas coal ash is studied and investigated for the purpose of determination of the rare earth elements (REE) content, ...
Read More
The most extensive Iranian coal-bearing basin is located in an area of 30000 km2, situated approximately 75 km from the Tabas county, south Khorasan Province, Iran. In this work, the Tabas coal ash is studied and investigated for the purpose of determination of the rare earth elements (REE) content, and the identification of the distribution patterns of trace elements. The elemental and phase analysis experiments were conducted using the X-ray diffraction (XRD), inductively-coupled plasma spectroscopy (ICP-MS), wet chemical analysis, and field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (FE-SEM/EDS) techniques. The XRD results showed that the phases in the Tabas coal ash were quartz, clay minerals, alkali feldspar, magnetite, and pyrite in order of abundance. The elemental analysis showed that the major elements were Si, Al, K, Fe, Mg, S, and Na, which was in good accordance with the chemical composition of the recognized minerals by the XRD method. The concentration of REEs was varied from 0.10 ppm (for Tm) to 68.48 ppm (for Ce), with an arithmetic mean of 14.19 ppm. The abundance of 16 REE elements was or even below the average of the earth crust abundances. Only one rare earth element (Samarium) was about 4.4 and 2.2 times more abundant than in the earth crust and in the world coking coal ashes. In order to further assess the occurrence states of REEs in each of detected mineral, the Fe-SEM/EDX method was used. The SEM/EDS analysis showed that REEs were mainly concentrated in the clay minerals.
B. Shokouh Saljoughi; A. Hezarkhani
Abstract
In this paper, we aim to achieve two specific objectives. The first one is to examine the applicability of wavelet neural network (WNN) technique in ore grade estimation, which is based on integration between wavelet theory and Artificial Neural Network (ANN). Different wavelets are applied as activation ...
Read More
In this paper, we aim to achieve two specific objectives. The first one is to examine the applicability of wavelet neural network (WNN) technique in ore grade estimation, which is based on integration between wavelet theory and Artificial Neural Network (ANN). Different wavelets are applied as activation functions to estimate Cu grade of borehole data in the hypogene zone of porphyry ore deposit, Shahr-e-Babak district, SE Iran. WNN parameters such as dilation and translation are fixed and only the weights of the network are optimized during its learning process. The efficacy of this type of network in function learning and estimation is compared with Ordinary Kriging (OK). Secondly, we aim to delineate the potassic and phyllic alteration regions in the hypogene zone of Cu porphyry deposit based on the estimation obtained of WNN and OK methods, and utilize Concentration–Volume (C–V) fractal model. In this regard, at first C–V log–log plots are generated based on the results of OK and WNN. The plots then are used to determine the Cu threshold values of the alteration zones. To investigate the correlation between geological model and C-V fractal results, the log ratio matrix is applied. The results showed that, Cu values less than 1.1% from WNN have more overlapped voxels with phyllic alteration zone by overall accuracy (OA) of 0.74. Spatial correlation between the potassic alteration zones resulted from 3D geological modeling and high concentration zones in C-V fractal model showed that the alteration zone has Cu values between 1.1% and 2.2% with OA of 0.72 and finally have an appropriate overlap with Cu values greater than 2.2% with OA of 0.7. Generally, the results showed that the WNN (Morlet activation function) with OA greater than OK can be can be a suitable and robust tool for quantitative modeling of alteration zones, instead of qualitative methods.
Vahab Sarfarazi; Hadi Haeri; Fereshteh Bagheri; Erfan Zarrin ghalam; Mohammad Fatehi Marji
Abstract
The tensile strengths of geomaterials such as rocks, ceramics, concretes, gypsum, and mortars are obtained based on the direct and indirect tensile strength tests. In this research work, the Brazilian tensile strength tests are used to study the effects of length and inclination angle of T-shaped non-persistent ...
Read More
The tensile strengths of geomaterials such as rocks, ceramics, concretes, gypsum, and mortars are obtained based on the direct and indirect tensile strength tests. In this research work, the Brazilian tensile strength tests are used to study the effects of length and inclination angle of T-shaped non-persistent joints on the mechanical and tensile behaviors of the geomaterial specimens prepared from concrete. These specimens have a thickness of 40 mm and a diameter of 100 mm, and are prepared in the laboratory. Two T-shaped non-persistent joints are made within each Brazilian disc specimen. The Brazilian disc specimens with T-shaped non-persistent joints are tested experimentally in the laboratory under axial compression. Then these tests are simulated in the two-dimensional particle flow code (PFC2D) considering various notch lengths of 6, 4, 3, 2, and 1 cm. However, different notch inclination angles of 0, 30, 60, 90, 120, and 150 degrees are also considered. In this research work, 12 specimens with different configurations are provided for the experimental tests, and 18 PFC2D models are made for the numerical studies of these tests. The loading rate is 0.016 mm/s. The results obtained from these experiments and their simulated models are compared, and it is concluded that the mechanical behavior and failure process of these geomaterial specimens are mainly governed by the inclination angles and lengths of the T-shape non-persistent joints presented in the samples. The fracture mechanism and failure behavior of the specimens are governed by the discontinuities, and the number of induced cracks when the joint inclination angles and joint lengths are increased. For larger joints when the inclination angle of the T-shaped non-persistent joint is around 60 degrees, the tensile strength is minimum but as it is closed to 90 degrees, the compressive strengths are maximum. However, an increase in the notch length increase the overall tensile strength of the specimens. The strength of samples decreases by increasing the joint length. The strain at the failure point decreases by increasing the joint length. It is also observed that the strength and failure process of the two sets of specimens and the corresponding numerical simulations are consistence.
Exploration
Mohammadjafar Mohammadzadeh; Majid Mahboubiaghdam; Moharram Jahangiri; Aynur Nasseri
Abstract
Most machine learning-monitored algorithms used to create mineral potential prediction maps require noise-free data to achieve high performance and reliable results. Unsupervised clustering methods are highly effective for uncovering a dataset’s hidden structures. Therefore, this study attempts ...
Read More
Most machine learning-monitored algorithms used to create mineral potential prediction maps require noise-free data to achieve high performance and reliable results. Unsupervised clustering methods are highly effective for uncovering a dataset’s hidden structures. Therefore, this study attempts a combination of supervised and unsupervised methods employing training and testing data to generate a highly accurate potential map of the Sonajil copper-gold deposit located in the NW of Iran. Here, a semi-supervised Bayesian algorithm is used to map the mineral landscape. Initially, ten raster layers of exploratory features are prepared. Then based on the copper concentration, 27 exploratory drilled boreholes are divided into four classes, C1 to C4, and from each class, two boreholes are selected, and 100-meter buffering is performed around these boreholes to extract 1113 training data based on the behavioral pattern of boreholes and surface samples. Subsequently, the existing data is clustered using the FCM method, and the total dataset and the clustering data are entered into the Bayesian algorithm to evaluate the accuracy of the Bayesian classifier method across five distinct clusters. The results show increased average accuracy when using clustered data instead of whole data for MPM mapping. Notably, the Bayesian semi-supervised algorithm achieved an impressive accuracy rate of 96% when cluster five data is excluded. To validate the Bayesian semi-supervised method, boreholes data that is not used in training were employed, which confirm the credibility of generated MPM. Overall results highlight the value of the Bayesian semi-supervised algorithm in improving the accuracy and reliability of mineral prospectivity mapping via the application of the FCM clustering method that efficiently organize the data, enabling the Bayesian algorithm to evaluate the accuracy of the Bayesian classifier method across different clusters and providing a successful optimal result in detecting blind ores in areas without exploratory boreholes and delineating more mineralization targets in the Sonajil and adjoining areas.
Mineral Processing
Mohammad Jahani Chegeni; Sajad Kolahi; Asghar Azizi
Abstract
Consumed energy is the most important issue and concern in industrial ball mills, and includes a major part of the costs of mineral processing plants. By using suitable liners and the optimal lifter count, the energy of the mill is properly transferred to the balls. In Part 1 of this research work, five ...
Read More
Consumed energy is the most important issue and concern in industrial ball mills, and includes a major part of the costs of mineral processing plants. By using suitable liners and the optimal lifter count, the energy of the mill is properly transferred to the balls. In Part 1 of this research work, five types of liners, i.e. Lorain, Osborn, Rib, cuboid, and Hi-lo, are examined. These liners all have separate lifters with the same volume. Their difference is in the width, height, and type of lifter profile. First, all types of liners are simulated with four lifters using the Discrete Element Method (DEM). Then the lifter count is increased four by four to fill the entire wall of the mill with lifters. Based on this, Lorain liner from 4 to 24 lifters, Osborn liner from 4 to 120 lifters, Rib liner from 4 to 40 lifters, and cuboid and Hi-lo liners from 4 to 64 lifters are simulated. For the first time, the kinetic (KE) and potential (PE) energies as well as the sum of these two energies (TE) of all the balls are calculated, and compared in the entire duration of the simulation from 0–13s for all the liner types and lifter counts mentioned above. Finally, by using data related to KE, PE, and TE for each type of liner, the optimal lifter count is obtained. Accordingly, 16 to 20 lifters are recommended for the Lorain liner, 64 to 76 lifters for the Osborn liner, 24 to 32 lifters for the Rib liner, 44 lifters for the cuboid liner, and 36 to 44 lifters for the Hi-lo liner.
Exploration
Moslem Jahantigh; Hamid Reza Ramazi
Abstract
The present paper gives out data-driven method with airborne magnetic data, airborne radiometric data, and geochemistry data. The purpose of this study is to create a mineral potential model of the Shahr-e-Babak studied area. The studied area is located in the south-eastern of Iran. The various evidential ...
Read More
The present paper gives out data-driven method with airborne magnetic data, airborne radiometric data, and geochemistry data. The purpose of this study is to create a mineral potential model of the Shahr-e-Babak studied area. The studied area is located in the south-eastern of Iran. The various evidential layers include airborne magnetic data, airborne radiometric data (potassium and thorium), lineament density map, cu geochemistry signature, and multi-variate geochemistry signature (PC1). High magnetic anomalies, lineament structures, and alteration zones (K/Th) were derived from airborne geophysics data. Geochemistry signatures (Cu and PC1) were derived from stream sediment data. The principal Component Analysis (PCA) as an unsupervised machine learning method and five evidential layers were used to produce a porphyry prospectivity model. As a result of this combination, mineral prospectivity model was produced. Then a plot of cumulative percent of the studied area versus pca prospectivity value was used to discrete high potential areas. Then to evaluate the ability of this MPM, the location of known cu indications was used. The results confirm an acceptable outcome for porphyry prospectivity modeling. Based on this model high-potential areas are located in south southwestern and eastern parts of the studied area.
Rock Mechanics
Shahla Miri Darmarani; Erfan Khoshzaher; Hamid Chakeri
Abstract
Shotcrete is used as a component of the support system in tunnels, and one of the methods to enhance its mechanical properties is by incorporating fibers. Fibers can significantly improve the mechanical properties of shotcrete, including compressive and tensile strength. This leads to savings in time, ...
Read More
Shotcrete is used as a component of the support system in tunnels, and one of the methods to enhance its mechanical properties is by incorporating fibers. Fibers can significantly improve the mechanical properties of shotcrete, including compressive and tensile strength. This leads to savings in time, cost, and post-installation maintenance. In recent years, due to the environmental pollution caused by the production of synthetic fibers, there has been increasing interest in using recycled materials, mainly recycled steel fibers from worn tires. The present study is a laboratory-based research program investigating the feasibility of using recycled fibers to improve the mechanical properties of shotcrete. In this study, recycled steel fibers from worn tires and shaves of basalt stone were used to create laboratory samples. The laboratory samples included cubic (10×10 cm) and cylindrical (15×30 cm) specimens with five different mix designs: ordinary shotcrete, shotcrete containing 0.5%, 1%, 1.5%, and 2% recycled fibers. These fibers were categorized into three length groups: coarse, mixed, and fine. The laboratory tests included compressive and tensile (Brazilian) strength tests at 3-day intervals. The results of the laboratory studies indicated that recycled fibers from worn tires could significantly enhance the mechanical properties of shotcrete, with a two-fold increase in compressive strength observed when the fiber content was increased by 2%. Moreover, the inclusion of basalt stone shaves not only improved the compressive strength of the samples but also had a substantial effect on enhancing the tensile strength.
Mineral Processing
Mohammad Karimi; Mohammad Karamoozian
Abstract
This research investigates the process of cerium extraction from tailings that have been separated from iron using a magnetic drum separator, through both acid leaching and solvent extraction methods. Initially, the mineralogical characteristics of the samples were analysed using microscopic studies. ...
Read More
This research investigates the process of cerium extraction from tailings that have been separated from iron using a magnetic drum separator, through both acid leaching and solvent extraction methods. Initially, the mineralogical characteristics of the samples were analysed using microscopic studies. The main minerals identified were feldspar, garnet, calcite, gypsum, amphibole, and secondary minerals such as chlorite, quartz, and apatite. The metallic minerals were included pyrite, chalcopyrite, magnetite, and hematite. The sample was taken from the tailing’s damps, then it was crushed to a particle size of less than 800 microns. The sample was then placed in a stirred tank along with water, fed into a spiral separator, and subsequently into a shaking table. The analysis results showed that the cerium grade increased from 320 ppm in the feed to 1364 ppm. In the leaching experiments, the influence of various parameters including temperature, acid concentration, type of acid, leaching time, and particle size on cerium leaching recovery rate was evaluated. The results indicated that temperature and acid concentration had the greatest impact on the leaching rate of cerium. In this stage, 95% of cerium was dissolved. Optimization tests for leaching conditions showed that the best conditions for cerium leaching were using hydrochloric acid at a 1:3 concentration with water (concentration of hydrochloric acid became 9 Molar), at a temperature of 90°C and a leaching time of 4 hours. In the subsequent phase, an optimization experiment was conducted with the same parameters. Under these conditions, 96.5% of cerium was dissolved. Then, the solvent extraction process was examined using organic solvents, di(2-ethylhexyl) phosphoric acid and tributyl phosphate. The results showed that the highest cerium extraction rate (81%) was achieved when di(2-ethylhexyl) phosphoric acid was used, considering parameters such as pH 3, organic-to-aqueous phase ratio of 1:1, 20-minute extraction time, 25°C temperature, and stirring speed of 300 rpm. Finally, the results of this research contribute to the optimization of the cerium extraction process and provide suggestions for improving the efficiency of this process.
Exploration
Ahmadreza Erfan; Saeed Soltani Mohammad; Maliheh Abbaszadeh
Abstract
Machine learning (ML) has significantly transformed multiple disciplines, including mineral resource evaluation in mining engineering, by facilitating more accurate and efficient estimation methods. Ensemble methods, as a fundamental component of modern machine learning, have emerged as powerful ...
Read More
Machine learning (ML) has significantly transformed multiple disciplines, including mineral resource evaluation in mining engineering, by facilitating more accurate and efficient estimation methods. Ensemble methods, as a fundamental component of modern machine learning, have emerged as powerful tools that robust techniques that integrate multiple predictive models to improve performance beyond that of any individual learner. This study proposes a novel ensemble method for estimating ore grades by localizing the base learner weights in ensemble method. Ordinary kriging, inverse distance weighting, k-nearest neighbors, support vector regression, and artificial neural networks have been used as the base learners of the algorithm. In ML base learners, coordinates (easting, northing and elevation) of samples have been defined as input nodes and grade has been defined as target. The proposed method has been validated for predicting the copper grade (Cu%) in Darehzar porphyry deposit. The performance of proposed method has been by individual base learners and famous ensemble methods. This comparison shows that performance of proposed method is better than other ones. The findings highlight the necessity of adapting ensemble methods to address spatial variability in geological data, thereby establishing a robust framework for ore grade estimation.
Hassan Bakhsandeh Amnieh; Alireza Mohammadi; M Mozdianfard
Abstract
Ground vibrations caused by blasting are undesirable results in the mining industry and can cause serious damage to the nearby buildings and facilities; therefore, controlling such vibrations has an important role in reducing the environmental damaging effects. Controlling vibration caused by blasting ...
Read More
Ground vibrations caused by blasting are undesirable results in the mining industry and can cause serious damage to the nearby buildings and facilities; therefore, controlling such vibrations has an important role in reducing the environmental damaging effects. Controlling vibration caused by blasting can be achieved once peak particle velocity (PPV) is predicted. In this paper, the values of PPV have been predicted and compared using the artificial neural network (ANN), multivariate regression analysis (MVRA) and empirical relations. The necessary data were gathered from 11 blast operations in Sarcheshmeh copper mine, Kerman. The neural network input parameters include distance from blast point, maximum charge weight per delay, spacing, stemming and the number of drill-hole rows in each blasting operation. The network is of the multi-layer perception (MLP) type with 24 sets of training data including 2 hidden layers, 1 output layer with the network architecture of {5-11-12-1}, and Sigmoid tangent and linear transfer functions. To insure the training accuracy, the network was tested by 6 data sets; the determination coefficient and the average relative error were found to be 0.977 and 8.85%, respectively, showing the MLP network’s high capability and precision in estimating the values of the PPV. To predict these values, MVRA and empirical relations were analyzed. The results have revealed that these relations have low capability in estimating the PPV parameter.
Mineral Processing
M. B. Fathi; B. Rezai; E. K. Alamdari; R. D. Alorro
Abstract
The effects of the functional groups and structures of two different resins, weak base/macroporous and strong base/gel type, Purolite A170 and Dowex 21K on the adsorption properties of Re(VII) ions were investigated experimentally and described by the isotherm, kinetic, and thermodynamic modeling. In ...
Read More
The effects of the functional groups and structures of two different resins, weak base/macroporous and strong base/gel type, Purolite A170 and Dowex 21K on the adsorption properties of Re(VII) ions were investigated experimentally and described by the isotherm, kinetic, and thermodynamic modeling. In this regard, four widely used adsorption isotherm models including Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R) were subjected to the sorption data in order to describe the reactions involved. Evaluating the correlation coefficients showed that the Freundlich and D-R isotherm models provided the best fit. The Langmuir isotherm capacities (qm) indicated that the perrhenate ion (ReO4-) adsorption was higher for the weak base/macroporous type resin rather than the others (166.67 mg/g and 142.86 mg/g, respectively). Moreover, the results of the EDX studies were in agreement with the previous results. Furthermore, the adsorption kinetics was demonstrated through fitting the data into different mechanisms, among which the pseudo-second-order mechanism was found to be successful for both resins; however, in the case of Dowex 21K, the rate of perrhenate ion uptake was more rapid than that for Purolite A170. Evaluation of the thermodynamic parameters also showed that the reaction mechanism was different for each case and that the adsorption of rhenium on Dowex 21K became more feasible with increase in temperature due to negative values for ΔH.
P. Tahmasebizadeh; S. Javanshir
Abstract
In this work, zinc extraction from an industrial leach solution was investigated by saponified di(2-ethylhexyl)phosphoric acid (D2EHPA). The solution obtained was from a bioleaching process of a low-grade lead-zinc sulfide ore that contained 50 g/L of zinc and 6.3 g/L of iron. The selective and high ...
Read More
In this work, zinc extraction from an industrial leach solution was investigated by saponified di(2-ethylhexyl)phosphoric acid (D2EHPA). The solution obtained was from a bioleaching process of a low-grade lead-zinc sulfide ore that contained 50 g/L of zinc and 6.3 g/L of iron. The selective and high Zn(II) extraction yield were obtained by modification of D2EHPA in a proposed two-step process. Firstly, a significant amount of iron (87%) was removed as sodium-jarosite via precipitation from the pregnant leaching solution (PLS) prior to zinc extraction, and secondly, the effective parameters involved in zinc extraction including the contact time, saponification degree, type of saponifier, stirring speed, pH, temperature, D2EHPA concentration, and phase ratio (A:O) were investigated. The results obtained showed that 98.4% of zinc could be extracted under the optimum conditions, i.e. 20% D2EHPA, 15% saponification degree, 650 rpm, pH 2, and an A:O ratio of 1:1 at the ambient temperature (25 ± 2 °C) during 90 s; it was 25% higher than using non-saponified D2EHPA under the same conditions. Moreover, while one theoretical step was required for the complete extraction of zinc by saponified D2EHPA, the required number of steps using D2EHPA was about three. Therefore, the advantages of the process would be two-fold: reducing the number of extraction stages and no need for neutralizing the raffinate in every extraction stage.
Rock Mechanics
M. Hosseini; A. R. Khodayari
Abstract
In an era of continued economic development around the globe, numerous rock-related projects including mining and gas/oil exploration are undertaken in regions with cold climates. Winters in the Iranian western and northwestern provinces are characterized by a high precipitation rate and a cold weather. ...
Read More
In an era of continued economic development around the globe, numerous rock-related projects including mining and gas/oil exploration are undertaken in regions with cold climates. Winters in the Iranian western and northwestern provinces are characterized by a high precipitation rate and a cold weather. Under such conditions, rocks are exposed to long freezing periods and several freeze-thaw (F-T) cycles. It is thus necessary to examine the impact of these cycles on the physical and mechanical properties of rocks. Considering the abundant sandstone resources in Iran, in this work, we focused on the Lushan sandstone by investigating the effects of F-T cycles and freezing temperatures on the uniaxial and triaxial compressive strengths, cohesion, internal friction angle, and elastic modulus of the rocks. To study the impact of the number of F-T cycles on the strength of rocks, the specimens frozen at -16 °C were subjected to 1, 4, 8, 16, and 32 F-T cycles. Similar tests were also carried out on the specimens frozen at -24 °C. Furthermore, a number of tests were undertaken at the ambient temperature (25 °C) on specimens that did not undergo an F-T cycle. According to the results obtained, an increase in the number of F-T cycles and freezing temperatures reduced the uniaxial and triaxial compressive strengths, cohesion, internal friction angle, and elastic modulus due to the growth of the existing cracks and the nucleation of new cracks in the rock. Consequently, the effective porosity increased, whereas the dry specific gravity decreased with more F-T cycles and lower freezing temperatures.
H. Sarfaraz; A.R. Bahrami; R. Samani
Abstract
A common instability in the rock slopes is a toppling failure. If this type of slope failure occurs due to another kind of failure, it is considered as the secondary toppling failure. A type of secondary toppling failure is the slide-head-toppling failure. In this instability, the upper portion of the ...
Read More
A common instability in the rock slopes is a toppling failure. If this type of slope failure occurs due to another kind of failure, it is considered as the secondary toppling failure. A type of secondary toppling failure is the slide-head-toppling failure. In this instability, the upper portion of the slope is toppled, and the pressure caused by the overturning of rock blocks leads to a semi-circular sliding in the soil mass at the slope toe. This instability is examined through the theoretical analysis and physical modelling. Firstly, the failure mechanism mentioned above is described. Next, the slide-head-toppling failure is studied through seven numerical simulations. The Phase2 and UDEC softwares, as the finite element and distinct element methods, respectively, are used in this work. Different kinds of slide-head-toppling failure are modelled such as the blocky, block-flexural, and flexural toppling failures. The numerical modelling results are compared with the existing physical tests and theoretical approaches. This comparison illustrates that the safety factor is underestimated due to the plane strain supposition in numerical modelling. However, the side-friction in the physical models has violated this assumption. The results obtained demonstrate that the distinct element method has an acceptable accuracy compared to the finite element method. Thus this numerical code can be used in order to examine the mentioned failure.
Mine Economic and Management
R. Bastami; A. Aghajani Bazzazi; H. Hamidian Shoormasti; K. Ahangari
Abstract
The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone ...
Read More
The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (GEP), linear multivariate regression (LMR), and non-linear multivariate regression (NLMR) models. In all models, the ANFO value, number of detonators, Emolite value, hole number, hole length, hole diameter, burden, spacing, stemming, sub-drilling, specific gravity of rock, hardness, and uniaxial compressive strength are used as the input parameters. The ANN model results in the test stage indicating a higher correlation coefficient (0.954) and a lower root mean square error (973) compared to the other models. In addition, it has a better conformity with the real blasting costs in comparison with the other models. Although the ANNs method is regarded as one of the intelligent and powerful techniques in parameter prediction, its most important fault is its inability to provide mathematical equations for engineering operations. In contrast, the GEP model exhibits a reliable output by presenting a mathematical equation for BC prediction with a correlation coefficient of 0.933 and a root mean square error of 1088. Based on the sensitivity analysis, the spacing and ANFO values have the maximum and minimum effects on the BC function, respectively. The number of detonators, Emolite value, hole number, specific gravity, hardness, and rock uniaxial compressive strength have a positive correlation with BC, while the ANFO value, hole length, hole diameter, burden, spacing, stemming, and sub-drilling have a negative correlation with BC.