Rock Mechanics
Sajjad Rezaei; Ramin Rafiee; Mohammad Ataei; Morteza Javadi
Abstract
The stability of waste dumps is a significant and at times critical issue in the development of surface mines. Due to insufficient space for waste disposal, environmental concerns, and various other factors, Mine No. 4 at Golgohar Sirjan is not capable of establishing a new waste dump. Given the existing ...
Read More
The stability of waste dumps is a significant and at times critical issue in the development of surface mines. Due to insufficient space for waste disposal, environmental concerns, and various other factors, Mine No. 4 at Golgohar Sirjan is not capable of establishing a new waste dump. Given the existing limitations of the mine, the investigation has focused on increasing the dump capacity through the implementation of benches. In this research work, the stability of the waste dump has been investigated using the limit equilibrium method with the Slide3D software, along with a Monte Carlo simulation approach for probabilistic analysis. The results obtained from these methods have been compared with each other. The acceptable safety factor considered for this assessment ranges from 1.15 to 1.2. By adding benches to the eastern waste dump of the mine, a displaced volume equivalent to 36,715.565 cubic meters has been added to the capacity. The constructed model is based on the topography of the area, with dimensions of 1850 meters in length, 1750 meters in width, and 160 meters in height. The results indicate that the safety factor of the waste dump has been calculated as follows using the Spencer, Janbu, and Bishop methods respectively: 1.26, 1.199, and 1.226. Mine No. 4 needs to extract 983.58 million tons of waste to produce 73 million tons of iron ore. In total, by discharging 428 million tons of waste in the northeastern and eastern dumps and adding a bench, a volume of 555.571 million tons of waste is available for disposing of the remaining waste. Considering the remaining waste volume, space must be allocated for waste disposal to Mine No. 4.
Exploitation
Hadi Fattahi; Mohammad Amirabadifarahani; Hossein Ghaedi
Abstract
This study introduces an innovative application of the Power Deck method to optimize drilling and blasting operations in open-pit mining, with a focus on the Nizar cement factory in Qom, Iran. Unlike traditional blasting techniques, this method strategically utilizes a controlled air gap at the end of ...
Read More
This study introduces an innovative application of the Power Deck method to optimize drilling and blasting operations in open-pit mining, with a focus on the Nizar cement factory in Qom, Iran. Unlike traditional blasting techniques, this method strategically utilizes a controlled air gap at the end of each blast hole to enhance explosive energy distribution, thereby reducing excessive drilling and minimizing explosive consumption. Through five blast phases, optimal hole diameters (76 mm and 90 mm) were implemented while maintaining a standardized 1-meter air gap, eliminating the need for additional drilling tests. The findings demonstrate a significant improvement in blasting efficiency, leading to a 12.5% reduction in specific charge and a 9% decrease in specific drilling compared to conventional methods. Post-blast fragmentation analysis, validated using the F50 index from Split-Desktop software, confirmed particle sizes ranging from 10 to 32 cm, aligning with predictions from the Kaz-Ram, Kaznetsov, and Swedifo models. Furthermore, the adoption of the Power Deck method resulted in a 1,448-ton increase in processed material over two months, minimizing crusher downtime due to oversized fragments. This study provides a novel, cost-effective approach to improving rock fragmentation, reducing blasting-related inefficiencies, and enhancing the overall economic performance of open-pit mining operations.
Exploitation
Hossein Mirzaei Nasir Abad; Mehrnaz Mohtasham; Farshad Rahimzadeh-Nanekaran
Abstract
Transportation of materials is the most cost-intensive component in open-pit mining operations. The aim of the allocation models is to manage and optimize transportation activities, leading to reduced wasted time, and ultimately, increasing profitability while reducing operational costs. Given that the ...
Read More
Transportation of materials is the most cost-intensive component in open-pit mining operations. The aim of the allocation models is to manage and optimize transportation activities, leading to reduced wasted time, and ultimately, increasing profitability while reducing operational costs. Given that the implementation of allocation models is one of the essential requirements in Iranian mining operations, this research work focuses on the transportation system in the Sungun copper mine, one of the largest mines in Iran, and highlights the challenges faced by the fixed allocation approach. The aim is to develop and implement a mathematical model to evaluate its performance, and suggest improvements. The allocation model attempts to optimize truck capacity utilization and maximize mining production. Implementing the model in the mine results in a 13.42% increase in total production compared to the conventional method, with a cost increase of 14.7%. The model shows the potential to meet operational and technical constraints to achieve optimal production. Overall, the developed model, with optimized management and improved fleet efficiency, outperforms the traditional haulage method in the mine.
Exploration
Peyman Afzal; Sina Samadi; Mehran Arian; Ali Solgi; Zahra Maleki; Mohammad Seraj
Abstract
An important work for fractured reservoir modeling and development of oilfields is the delineation of geomechanical attributes such as permeability. The main aim of this research work is detection of permeability zones in the Asmari reservoir of Gachsaran oilfield (SW Iran) based on mud loss data. The ...
Read More
An important work for fractured reservoir modeling and development of oilfields is the delineation of geomechanical attributes such as permeability. The main aim of this research work is detection of permeability zones in the Asmari reservoir of Gachsaran oilfield (SW Iran) based on mud loss data. The mud loss was 3D estimated by ordinary kriging method. Then, fractal number-size, concentration-volume, and concentration-distance to fault models were applied for permeability zone classification. The concentration-distance to fault fractal model shows three permeability zones, and the concentration-volume fractal modeling represents eight zones with an index multifractal behavior. Moreover, the number-size fractal analysis presented that a multifractal behavior with five societies. The correlation between the results obtained by these fractal methods reveals that the obtained zones have a proper overlap together. High value permeability zones based on the concentration-distance to fault and concentration-volume fractal models are began from 501 Barrel Per Day (BPD) mud loss, and 630 BPD obtained by the N-S modeling. Fractal modeling indicates that the permeability zones occur in the SW, NW and southern parts of the Gachsaran oilfield which can be the fractured section of the Asmari reservoir rock. Main faults from this oilfield are correlated with the permeability zones derived via fractal modeling.
K. Tanguturi; R. Balusu
Abstract
Fundamental understanding of the goaf gas distribution in a gassy coal mine is necessary for developing effective goaf gas drainage strategies in the longwall coal mine. The goaf gas was subjected to the surface and body forces that were classified depending upon whether they acted on the surface area ...
Read More
Fundamental understanding of the goaf gas distribution in a gassy coal mine is necessary for developing effective goaf gas drainage strategies in the longwall coal mine. The goaf gas was subjected to the surface and body forces that were classified depending upon whether they acted on the surface area or the volume of the gas element. Of these forces, the body forces were more predominant in displacing the goaf gas present in the underground mine. The buoyancy forces were classified as the body forces; they are the predominant forces acting on the goaf gas. The buoyancy forces depend mainly upon the density variation in the gas species and the panel orientation or panel geometry. If the temperature variations are neglected, the buoyancy forces that cause the displacement of the goaf gas depend mainly upon the panel orientation. In this work, numerical investigations were carried out using the computational fluid dynamics (CFD) techniques for the fundamental understanding of the goaf gas displacement for various panel orientations. The numerical results obtained for various panel orientations indicated that the goaf gas is displaced towards the tailgate (TG) side when the maingate (MG) was downdip, towards the MG side when MG was updip, towards the start-up of the panel when the face was downdip, and towards the face when the face was updip.
Mineral Processing
S. Nazari; Seyed Ziaedin Shafaei; M. Gharabaghi; R. Ahmadi; B. Shahbazi
Abstract
In this work, the effects of the types of frother (MIBC, pine oil, and A65) and operational parameters (impeller speed and air flow rate) on the flotation of quartz coarse particles was investigated using nano bubbles (NBs). Quartz particles of the size of -425+106 mm and three types of frother were ...
Read More
In this work, the effects of the types of frother (MIBC, pine oil, and A65) and operational parameters (impeller speed and air flow rate) on the flotation of quartz coarse particles was investigated using nano bubbles (NBs). Quartz particles of the size of -425+106 mm and three types of frother were used for the flotation experiments. Also the impeller speed was 600 to 1300 rpm, and the air flow rates were 30 and 60 L/h. In the absence of NBs, the maximum recovery was achieved with the pine oil frother, an impeller speed of 1000 rpm, and an air flow rate of 60 L/h. In the presence of NBs, the maximum recovery was achieved using pine oil at an impeller speed of 900 rpm and an air flow rate of 30 L/h. However, increasing the recovery in the presence of NBs, compared to the absence of NBs for MIBC, was more than the other two frothers, and the recovery using this frother to increase up to 25% but using pine oil, the recovery increased up to 23%. The lowest recovery in the presence of NBs was obtained using A65. Also the use of NBs increased recovery in all the three fractions compared to the absence of NBs but the presence of NBs increased the recovery of particles with size of -212+106 mm more than the particle size in the ranges of -300+212 and -425+300 mm.
Exploitation
Behnam Alipenhani; Mehran Jalilian; Abbas Majdi; Hassan Bakhshandeh Amnieh; Mohammad Hossein Khosravi
Abstract
The paper presents the effect of the dip of joints, joint spacing, and the undercutting method on the height of the caving in block caving. The obtained results show that among the three investigated parameters, respectively, the dip of joints, undercutting method, and joint spacing have the greatest ...
Read More
The paper presents the effect of the dip of joints, joint spacing, and the undercutting method on the height of the caving in block caving. The obtained results show that among the three investigated parameters, respectively, the dip of joints, undercutting method, and joint spacing have the greatest effect on increasing the height of the caving zone. Comparing the data obtained from physical and numerical modeling shows a 97% match. Also, by increasing the joint spacing from 4 to 6 cm, 14%, from 6 to 8 cm, about 35%, and from 8 to 10, about 50%, the height of the caving zone has decreased. Regarding the dip of the joint, with the dip increasing from 30 to 45 degrees, about 3% of the caving height decreases. By increasing the dip of the joint from 45 to 60 degrees, the caving height has decreased by 42%. By increasing this value from 60 to 75 degrees, the caving height has increased by 50%. Also, changing the undercutting method from symmetric to advanced undercutting has increased the caving height by 40%. Additionally, three mathematical models have been proposed based on the shape of the caving zone in physical modeling.
Mineral Processing
Chol Ung Ryom; Kwang Hyok Pak; Il Chol Sin; Kwang Chol So
Abstract
Shaking table and flotation are often used in scheelite (CaWO4) beneficiation, and usually they are applied in sequence. In this paper, analysis of mineral movement have been investigated in shaking table in which pulp was conditioned with xanthate as a collector and fed, heavy scheelite was concentrated, ...
Read More
Shaking table and flotation are often used in scheelite (CaWO4) beneficiation, and usually they are applied in sequence. In this paper, analysis of mineral movement have been investigated in shaking table in which pulp was conditioned with xanthate as a collector and fed, heavy scheelite was concentrated, while heavy pyrite removed directly on the deck by the action of collector. Artificially mixed mineral with 1% scheelite and 2% pyrite was used in CFD simulations and experiments. Through CFD simulations, it was found that pyrite particles, which were hydrophobic by collector, were attached to the water-air interface and subjected to upward buoyancy, which increased the density difference between scheelite and pyrite particles and enabled the separation of both minerals in the shaking table. The experiment results showed that the concentrate grade in conventional table concentration was 23.5% WO3, the separation efficiency was 77.89%, while the concentrate grade of scheelite in the table concentration of xanthate presence was 65.0% WO3 and the separation efficiency was 80.88%. The combination of flotation in table with collector addition not only eliminated the flotation to remove pyrite after table but also resulted in a lower rate of scheelite loss.
A. Ghasemloonia; S. D. Butt
Abstract
Underground caverns in rock salt deposits are the most secure disposal method and a type of gas-storing facility. Gas storage plays a vital role in ensuring that a strategic relationship is secured between an established energy infrastructure provider and a midstream energy company. The Fischells Brook ...
Read More
Underground caverns in rock salt deposits are the most secure disposal method and a type of gas-storing facility. Gas storage plays a vital role in ensuring that a strategic relationship is secured between an established energy infrastructure provider and a midstream energy company. The Fischells Brook area is a pillow-shaped body of salts located in the St. George's Bay area of southwest Newfoundland, which has three layers of salt beds, and is capable of excavating caverns for the storage purposes. The development of cavern facilities requires the stability analysis through numerical models and experimental facilities. This work was motivated to examine the engineering feasibility of the salt cavern characteristics in this area, and to investigate its stability under creep behavior. An experimental test facility was developed to investigate the constitutive parameters governing the creep of rock salt, and the constitutive parameters were implemented into a developed finite element model to investigate the stability of the cavern over a 5-year period. Also a stress-based dilatancy failure envelope was developed to interpret the results of the numerical model, and to conduct sensitivity analyses for different design scenarios. The design recommendations developed in this study will be implemented as a key part of an engineering feasibility study for underground caverns in salt deposits in western Newfoundland.
Exploration
Sepideh Ghasemi; Ali Imamalipur; Samaneh Barak
Abstract
This investigation centers on the Qarah Tappeh copper deposit, situated in the northern region of West Azerbaijan province, approximately 15 kilometers northeast of Maku city. The primary objective of the study is to comprehensively examine the study area through the analysis of 253 lithogeochemical ...
Read More
This investigation centers on the Qarah Tappeh copper deposit, situated in the northern region of West Azerbaijan province, approximately 15 kilometers northeast of Maku city. The primary objective of the study is to comprehensively examine the study area through the analysis of 253 lithogeochemical samples, and assessing reserves utilizing ordinary kriging, guided by subsurface data obtained from 14 boreholes totaling 909.2 meters. The concentration–volume (C–V) multifractal modeling approach was employed to estimate the deposit's reserve. The findings of this research project indicate an estimated 988,604 tons of the deposit with an average grade of 0.14%. Through the analysis of log–log plots within the C–V relationship, threshold values signifying various copper (Cu) concentrations were identified. These plots revealed a pronounced power-law correlation between Cu concentrations and their corresponding volumes, with arrows denoting four specific threshold values. Utilizing this analytical methodology, mineralized zones were classified into five distinct categories: high (>0.42%), above-average (0.35-0.42%), average (0.27-0.35%), below-average (0.14-0.27%), and low (<0.14%) mineralized zones.
Mineral Processing
Mostafa Maleki Moghaddam; Hosein Najmaddaini; Saeid Zare; Masoud Rezaei; Mohammad Ali Motamedineya; Gholamreza Biniaz
Abstract
Abstract
The structural characteristics of mill liners, such as lifter shape and mill speed, significantly influence the grinding process. At the Sarcheshmeh slag flotation plant, the 6×6 meters SAG mill was initially equipped with 48 rows of liners, designed in a Hi-Lo configuration for the first ...
Read More
Abstract
The structural characteristics of mill liners, such as lifter shape and mill speed, significantly influence the grinding process. At the Sarcheshmeh slag flotation plant, the 6×6 meters SAG mill was initially equipped with 48 rows of liners, designed in a Hi-Lo configuration for the first half and a Lo-Lo configuration for the second. Throughout the mill shell liner's 1700-hour operational period, monitoring identified 30 failures. Investigations revealed that defects in the liner design and improper charge motion were the main causes. This study proposes modifications and standardization of the shell liner design, tailored to the specific circuit conditions, to enhance performance and reliability. The redesign included several key changes: 1) Reducing the number of rows: The number of liner rows was decreased from 48 to 32. 2) Adjusting lifter angle: The lifter angle was increased from 23 to 30o to optimize performance. 3) Eliminating Hi-Lo design liners: The Hi-Lo design liners were changed to Hi-Hi, and 4) Reducing liner variety: The variety of liners was streamlined from 5 types to 2. The installation of the proposed liners optimized the charge trajectory for grinding, resulting in higher liner's lifetime. It extended the liner life by 30% and eliminated liner failures, reducing them from 30 to zero. The wear rate for the proposed design was 0.05 mm/hour, while the original design had a wear rate of 0.11 mm/hour. This difference corresponds to a factor of 2.3 times improvement.
Exploration
Hossein Mahdiyanfar; Mirmahdi Seyedrahimi-Niaraq
Abstract
In this investigation, the hybrid approach of wavelet transforms and fractal method named Wavelet-Fractal model has been utilized for geochemical contamination mapping as a novel application. For this purpose, the distribution maps of pollutant elements were transformed to the position-scale domain using ...
Read More
In this investigation, the hybrid approach of wavelet transforms and fractal method named Wavelet-Fractal model has been utilized for geochemical contamination mapping as a novel application. For this purpose, the distribution maps of pollutant elements were transformed to the position-scale domain using two-dimensional discrete wavelet transformation (2DDWT). The Symlet2 and Haar mother wavelets were applied for two-dimensional signal analysis of elemental concentrations of As, Pb, and Zn based on soil samples taken from the Irankuh mining district, Central Iran. The Symlet2 and Haar wavelet coefficients of approximate and detail components were obtained at one level frequency decomposition using 2DDWT. The wavelet coefficients of approximate component (WCAC) were modeled using a fractal method for delineating the geochemical contamination populations of toxic elements. Based on the results of wavelet-fractal models, the As, pb, and Zn were classified into three and four populations. Two areas contaminated with metals have been found in the district. These areas are within the limit of mining operations and its surroundings. The wavelet-fractal proposed model has been able to separate environmental areas contaminated with toxic metals accurately. Anomalously intense pollution has spread to one kilometer outside the mining operation limit. This dispersion in the case of Pb and Zn elements is well seen in the geochemical map prepared with the Haar class.
Mineral Processing
Sajad Kolahi; Mohammad Jahani Chegeni; Asghar Azizi
Abstract
In Part 2 of this research work, five types of liners, i.e. wave, step, step@, ship-lap, and ship-lap@, are examined. These liners all have similar connected lifters with different volumes. Their difference is in the width, height, and type of the lifter profile. All the five liner types, from 8 to 64 ...
Read More
In Part 2 of this research work, five types of liners, i.e. wave, step, step@, ship-lap, and ship-lap@, are examined. These liners all have similar connected lifters with different volumes. Their difference is in the width, height, and type of the lifter profile. All the five liner types, from 8 to 64 lifters, are simulated using the Discrete Element Method (DEM). In this research work, for the first time, data from the sum of the kinetic and potential energies of individual balls (79,553 particles) are used to find the appropriate range for the number of lifters. In other words, the kinetic and potential energies of all particles within the system (inside the ball mill) are the basis for determining the appropriate number of lifters. The results suggest that for the wave liner, the appropriate range of the number of lifters is between 8 and 16, for the step, step@, and ship-lap liners; it is between 12 and 20, and for the ship-lap@ liner, it is between 8 and 20. In fact, using the data on the kinetic and potential energies of the balls inside the mill, it is possible to determine the appropriate range of the number of lifters, which is done for the first time in this study. In general, it is suggested that the data on the kinetic and potential energies of the balls can be used to determine the number of mill lifters, and unlike what has been done. So far, by other researchers, the number of mill lifters should not be determined solely by using its diameter or the dimensions of the lifters. Also the effect of mill-rotation direction on the values of kinetic and potential energies in step and ship-lap liners is investigated. It is shown that the step@ and ship-lap@ liners transfer more energy to the balls than the step and ship-lap liners, and have a suitable direction of rotation.
H. Shahi; R. Ghavami Riabi; A. Kamkar Ruhani; H. Asadi Haroni
Abstract
In this research work, the frequency domain (FD) of surface geochemical data was analyzed to decompose the complex geochemical patterns related to different depths of the mineral deposit. In order to predict the variation in mineralization in the depth and identify the deep geochemical anomalies and ...
Read More
In this research work, the frequency domain (FD) of surface geochemical data was analyzed to decompose the complex geochemical patterns related to different depths of the mineral deposit. In order to predict the variation in mineralization in the depth and identify the deep geochemical anomalies and blind mineralization using the surface geochemical data for the Dalli Cu-Au porphyry deposit, a newly developed approach was proposed based on the coupling Fourier transform and principal component analysis. The surface geochemical data was transferred to FD using Fourier transformation and high and low pass filters were performed on FD. Then the principal component analysis method was employed on these frequency bands separately. This new combined approach demonstrated desirably the relationship between the high and low frequencies in the surface geochemical distribution map and the deposit depth. This new combined approach is a valuable data-processing tool and pattern-recognition technique to identify the promising anomalies, and to determine the mineralization trends in the depth without drilling. The information obtained from the exploration drillings such as boreholes confirms the results obtained from this method. The new exploratory information obtained from FD of the surface geochemical distribution map was not achieved in the spatial domain. This approach is quite inexpensive compared to the traditional exploration methods.
Mineral Processing
Ahmad Abbasi Gharaei; Bahram Rezai; Hadi Hamidian Shormasti
Abstract
This paper examines the performance of Atmospheric Leaching (AL) and High-Pressure Acid Leaching (HPAL) on nickel laterite, classified as limonite. The study, conducted on a laboratory scale, involved temperatures of 35-95°C for AL and 220-250°C for HPAL. Nickel and cobalt contents were found ...
Read More
This paper examines the performance of Atmospheric Leaching (AL) and High-Pressure Acid Leaching (HPAL) on nickel laterite, classified as limonite. The study, conducted on a laboratory scale, involved temperatures of 35-95°C for AL and 220-250°C for HPAL. Nickel and cobalt contents were found to be 0.7% and 0.04%, respectively. AL achieved an 89% yield of Al with a pH of 0.2 and a 14-hour leaching time, while nickel and iron recoveries reached 92% and 87% after 20 hours, with an acid consumption of 1.2 kg H2SO4 per 100 kg laterite (dry) at pH 0.2. Leaching experiments at 220-250°C for 2 hours showed similar nickel recovery rates, indicating no improvement beyond 240°C. Hematite, a stable compound associated with nickel, hindered its release during HPAL due to its resistance to leaching. Nickel yields remained around 90% in both AL and HPAL tests. Iron behavior differed significantly between the two methods, with HPAL dissolving iron initially but transforming it into hematite in situ, leading to lower net acid consumption compared to AL. The leaching mechanism for iron oxides followed empirical power law kinetics of order 1.5 with activation energies of 36.23 and 25.09 kJ/mol for Ni and Fe, respectively.
Mineral Processing
Meysam Nikfarjam; Ardeshir Hezarkhani; Farhad Azizafshari; Hamidreza Golchin
Abstract
Geometallurgical modeling (GM) plays a crucial role in the mining industry, enabling a comprehensive understanding of the complex relationship between geological and metallurgical factors. This study focuses on evaluating metallurgical varibles at the Sungun Copper mine in Iran by measuring and predicting ...
Read More
Geometallurgical modeling (GM) plays a crucial role in the mining industry, enabling a comprehensive understanding of the complex relationship between geological and metallurgical factors. This study focuses on evaluating metallurgical varibles at the Sungun Copper mine in Iran by measuring and predicting process properties, including semi-autogenous power index (SPI), recovery (Re), and concentration grade. To overcome the additivity limitations of geostatistical methods, we utilized machine learning algorithms for enhanced predictive modeling, aiming to improve decision-making and optimize mining operations in geometallurgy. The research incorporates crucial data inputs such as sample coordinates, grades, lithology, mineralization zones, and alteration to assess the accuracy and reliability of different machine learning regression methods. The Relative Standard Deviation (RSD) is highlighted as a significant metric for comparing the accuracy of predicted process properties. Evaluation metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R2) further confirm the superiority of specific modeling methods in certain scenarios. The K-Nearest Neighbors (KNN) method exhibits superior accuracy, lower error metrics (RMSE and MAE), and a higher R2 for modeling the SPI test. For modeling Cu grade in concentrate, Support Vector Regression (SVR) proves to be effective and reliable, outperforming the Multilayer Perceptron (MLP) method. Despite MLP's high R2, its higher RSD suggests increased uncertainty and variability in the predictions. Therefore, SVR is considered more suitable for modeling Cu grade in concentrate. Findings optimize operations at Sungun Copper mine, improving decision-making, efficiency, and profitability.
Rock Mechanics
Faezeh Barri; Hamid Chakeri; Mohammad Darbor; Hamed Haghkish
Abstract
Excavation with Tunnel Boring Machine (TBM) in urban environments can have risks, such as ground surface settlement. The empty space between the cutterhead and the segment should be filled with suitable grout during the excavation. Nowadays, using grout behind the segment and other fillers fill the empty ...
Read More
Excavation with Tunnel Boring Machine (TBM) in urban environments can have risks, such as ground surface settlement. The empty space between the cutterhead and the segment should be filled with suitable grout during the excavation. Nowadays, using grout behind the segment and other fillers fill the empty space behind the segment and reduce the amount of ground surface settlement. Undoubtedly, using a grout with appropriate mechanical behavior can be a suitable substitute for excavated soil in mechanized tunneling. In this research, the mechanical behavior of the grout behind the segment during injection into the space between the soil and the segment and its mixture with the soil is studied. Also, the effect of mechanical properties of grout mixed with soil on the ground surface settlement is investigated using numerical modeling. The components of two-component grout of this study comprises Sufian type 2 cement with 28-day strength of 44 MPa and density of 3050 kg/m3, Salafchegan bentonite with density of 2132 kg/m3 and precipitator of liquid sodium silicate with density of the solution 1500 kg/m3. The results of the laboratory studies indicated that mixing the grout and soil increases the mechanical properties of grout significantly. Increasing the soil in the mixture of soil and grout up to 40% increases the uniaxial compressive strength up to 300%, the elasticity of modulus up to 156% and the cohesion of the mixture up to 100%. On the other hand, based on the results of numerical modeling, the proper injection pressure can significantly reduce the ground surface settlement. Increasing the injection pressure from 0 to 120 kPa has a 17% influence on the reduction of ground surface settlement.
Mine Economic and Management
Sarina Akbari; Reza Ghezelbash; Hamidreza Ramazi; Abbas Maghsoudi
Abstract
Natural hazards, particularly landslides, have long posed significant threats to people, buildings, and the surrounding environment. Therefore, comprehensive planning for urban and rural development necessitates the development and implementation of landslide risk zoning models. Numerous methodologies ...
Read More
Natural hazards, particularly landslides, have long posed significant threats to people, buildings, and the surrounding environment. Therefore, comprehensive planning for urban and rural development necessitates the development and implementation of landslide risk zoning models. Numerous methodologies have been proposed for generating landslide hazard maps, which can potentially aid in predicting future landslide-prone areas. This study employed an integrated approach that combines statistical and multi-criteria decision-making (MCDM) methodologies. The Frequency Ratio (FR) and Analytical Hierarchy Process (AHP) were utilized as knowledge-driven approaches, while the Support Vector Machine (SVM) using an RBF kernel, a widely recognized machine learning algorithm, was applied as a data-driven method. Ten factors influencing landslides were considered, including slope angle, aspect, altitude, geology, land use, climate, erosion, and distances from rivers, faults, and roads. The results revealed that landslides are more predictable in the southern, southwestern, and central regions of the studied area. A quantitative assessment of the different methods using prediction-rate curves indicated that the SVM method outperformed the FR and AHP-FR approaches in identifying susceptible areas. The findings of this work could be effectively employed to mitigate potential future hazards and associated damages.
Exploration
Hamid Geranian; Mohammad Amir Alimi
Abstract
This study employs Sentinel-2 satellite images along with the random forest algorithm to create a regional geological map. For this purpose, the independent variables consist of the images for 10 Sentinel-2 bands of the Khosuf-I region, while the class labels consist of a geological map of Khosuf-I divided ...
Read More
This study employs Sentinel-2 satellite images along with the random forest algorithm to create a regional geological map. For this purpose, the independent variables consist of the images for 10 Sentinel-2 bands of the Khosuf-I region, while the class labels consist of a geological map of Khosuf-I divided into three and fifteen rock units. The classification accuracy of the resulting model is 90.97 and 84.85% for the three-class training and testing data, and 94.76 and 63.92% for the fifteen-class training and testing data, respectively. These models are then applied to the Sentinel-2 satellite images' data of the Birjand-IV region to prepare two preliminary geological maps. The Birjand-IV region's three-class geology map reveals that igneous rocks are present in the northern and southern regions, while sedimentary rocks occupy the middle section and metamorphic rocks are found within the region's igneous masses. Similarly, the fifteen-class geology map of Birjand-IV indicates that andesite, dacite, intermediate tuff rock units, and metamorphic rocks characterize the northern region. Conversely, the southern part of the region is mainly composed of ophiolite, flysch sediments, basaltic and ultra-basic volcanic rocks, and limestone and shale interlayers. Field studies in three areas confirm the accuracy of the preliminary geology maps.
Exploitation
Ali Rezaei; Ebrahim Ghasemi; Ali Farhadian; Sina Ghavami
Abstract
In this study, a comprehensive investigation has been done on 10 different types of granite building stones from various mines in Iran. The study aims to investigate the relationship between the texture coefficient (TC) and abrasivity properties of the studied stones. Abrasivity of stones was quantified ...
Read More
In this study, a comprehensive investigation has been done on 10 different types of granite building stones from various mines in Iran. The study aims to investigate the relationship between the texture coefficient (TC) and abrasivity properties of the studied stones. Abrasivity of stones was quantified through six indices, including equivalent quartz content (EQC), rock abrasivity index (RAI), Schimazek abrasivity factor (F), Cerchar abrasivity index (CAI), building stone abrasivity index (BSAI), and the Taber wear index (Iw). Bi-variate regression analysis was applied to develop the predictive equations for relationship between TC and abrasivity indices. The investigations demonstrated that there is a direct relationship between TC and all abrasivity indices. Furthermore, TC has moderate to high relationship with abrasivity indices. After developing the equations, their accuracy was evaluated by performance criteria including determination coefficient (R2), the normalized root mean square error (NRMSE), the variance account for (VAF), and the performance index (PI). The strongest relationship was found between TC and RAI (with R2, VAF, NRMSE, and PI value of 0.850, 0.074, 85.386, and 1.630, respectively), while the weakest relationship was observed between TC and F (with R2, NRMSE, VAF, and PI value of 0.491, 0.532, 47.605, and 0.435, respectively). This research demonstrates importance of the textural characteristics of stones, especially TC as a reliable index, on the abrasivity properties of granite building stones. Thus, the equations developed herein can be practically used for estimating the stone abrasivity in building stone quarrying and processing projects.
Exploitation
Masoud Monjezi; Morteza Baghestani; Peyman Afzal; Ali Reza Yarahmadi Bafghi; Seyyed Ali Hashemi
Abstract
Blasting is an essential operation in mining projects, significantly affecting the particle-size distribution, which is critical for subsequent processes such as loading, hauling, and milling. Effectiveness of the blasting operations rely on accurate rock characterization, especially when dealing with ...
Read More
Blasting is an essential operation in mining projects, significantly affecting the particle-size distribution, which is critical for subsequent processes such as loading, hauling, and milling. Effectiveness of the blasting operations rely on accurate rock characterization, especially when dealing with different rock types. Proper rock and fragmentation characterization allows for tailored blast designs and also can lead to precise predictions of fragmentation quality. Various characterization techniques exist. This paper examines the application of fractal analysis to classify fragmentation quality and rock types, utilizing the Choghart iron mine in Iran as a case study. Extensive fieldwork collected data on rock properties (uniaxial compressive strength and density) and fragmentation outcomes during blasting. The fractal modeling revealed distinct breakpoints for classification, followed by Logratio analysis to assess relationships among the identified classes. Finally, mathematical models were established to predict fragmentation features based on the relevant rock attributes. The models demonstrated improved predictive accuracy as compared to the prior classifications.
Rock Mechanics
Aram Ardalanzdeh; Seyed Davoud Mohammadi; Vahab Sarfarazi; Hossein Shahbazi
Abstract
Creating holes in rocks using different methods presents various challenges. In this research, an attempt was made to investigate these characteristics and the existing problems in creating holes based on the texture and brittleness of the rock. For this purpose, several core specimens were taken from ...
Read More
Creating holes in rocks using different methods presents various challenges. In this research, an attempt was made to investigate these characteristics and the existing problems in creating holes based on the texture and brittleness of the rock. For this purpose, several core specimens were taken from the Alvand granitic batholith of Hamadan, and the petrological and textural indexes of the rocks were determined. There are four types of rock textures, ranging from coarse-grained to fine-grained. The texture coefficients (TC) for the four types of rocks (G1 to G4) were 1.709, 1.730, 1.774, and 1.697, respectively. The brittleness index (B1) for the four types of rocks (G1 to G4) were 9.13, 11.01, 12.07, and 10.65, respectively. After that, using a diamond drill, one hole was created in each rock core specimen, and at the end of drilling, a fracture pit was separated from the bottom of each hole in the specimen. The results show that as the mineral size decreases, the fracture pit depth also decreases, and in porphyry texture, the fracture pit depth is between the fracture pit depths of coarse-grained and medium-grained rocks. As the texture coefficient (TC) and brittleness of the rock specimens increase, the fracture pit depth decreases, and in porphyry texture, the fracture pit depth remains between the fracture pit depths of coarse-grained and medium-grained rocks. Finally, the results from laboratory tests indicate that creating holes using a drill to study the effect of the holes on rock behavior can cause damage to the rocks.
Exploration
Ahmadreza Erfan; Saeed Soltani Mohammad; Maliheh Abbaszadeh
Abstract
Machine learning (ML) has significantly transformed multiple disciplines, including mineral resource evaluation in mining engineering, by facilitating more accurate and efficient estimation methods. Ensemble methods, as a fundamental component of modern machine learning, have emerged as powerful ...
Read More
Machine learning (ML) has significantly transformed multiple disciplines, including mineral resource evaluation in mining engineering, by facilitating more accurate and efficient estimation methods. Ensemble methods, as a fundamental component of modern machine learning, have emerged as powerful tools that robust techniques that integrate multiple predictive models to improve performance beyond that of any individual learner. This study proposes a novel ensemble method for estimating ore grades by localizing the base learner weights in ensemble method. Ordinary kriging, inverse distance weighting, k-nearest neighbors, support vector regression, and artificial neural networks have been used as the base learners of the algorithm. In ML base learners, coordinates (easting, northing and elevation) of samples have been defined as input nodes and grade has been defined as target. The proposed method has been validated for predicting the copper grade (Cu%) in Darehzar porphyry deposit. The performance of proposed method has been by individual base learners and famous ensemble methods. This comparison shows that performance of proposed method is better than other ones. The findings highlight the necessity of adapting ensemble methods to address spatial variability in geological data, thereby establishing a robust framework for ore grade estimation.
Environment
Amirmahmood Razavian; Alireza Arab Amiri; Abolghasem Kamkar Rouhani; Meysam Davoodabadi Farahani
Abstract
Mining activities cause environmental pollution. Satellite remote sensing is considered an effective strategy for monitoring pollution, as other direct methods of testing soil pollution levels are often costly and face accessibility challenges in certain areas. Unlike optical sensors, radar systems can ...
Read More
Mining activities cause environmental pollution. Satellite remote sensing is considered an effective strategy for monitoring pollution, as other direct methods of testing soil pollution levels are often costly and face accessibility challenges in certain areas. Unlike optical sensors, radar systems can capture data in all weather conditions and operate around the clock. However, radar systems do not display details and borders of zones and lack multispectral data collection capability. Consequently, combining various characteristics of optical images and radar data offers a comprehensive approach to monitoring pollution. Given these pros and cons, a combination of optical and radar images from the Sentinel satellite was employed in this study to identify surface and physical pollution areas caused by mining activities. The proposed method is a combination of Curvelet Transform, Simple Linear Iterative Clustering, Principle Components Analysis, and integration of radar and optical results using a statistical based clustering scheme, which allows the detection of contaminated zones. This research benefits from several innovative strategies, such as the separate processing and integration of optical and radar images, the simultaneous application of the curvelet transform and principle component analysis, and the utilization of two distinct clustering methods. Finally, the results obtained from radar and optical images of the Damghan region in Semnan province, Iran, on a 1 to 100.000 scale showed the proposed methodology can segment the contaminated zone caused by the eastern Alborz coal preparation plant through soil pollution modelling.
Exploration
Mojtaba Bazargani Golshan; Mehran Arian; Peyman Afzal; Lili Daneshvar Saein; Mohsen Aleali
Abstract
The purpose of this research is application of the Concentration-Number and Concentration-Area fractal models for determining the distribution pattern of REEs and lithium in mining area of the North Kochakali coal deposit. According to the Concentration-Area and Concentration-Number fractal graphs, four ...
Read More
The purpose of this research is application of the Concentration-Number and Concentration-Area fractal models for determining the distribution pattern of REEs and lithium in mining area of the North Kochakali coal deposit. According to the Concentration-Area and Concentration-Number fractal graphs, four different geochemical groups were obtained for REEs and lithium in the mining area of North Kochakali coal deposit. The comparison of the threshold values and the models obtained based on the Concentration-Area and Concentration-Number fractal models indicate that the Concentration-Area Fractal model has performed better in determining different geochemical groups and separating anomalies from the background for REEs and lithium in North Kochakali coal deposit. Based on the fractal models in the mining area, the southeastern and western parts have the highest concentrations of REEs and the northeastern parts have the highest concentrations of lithium. These parts should be considered in mining operations due to their higher economic value. The locations of the REEs anomalies are consistent with the location of right-lateral faults with a normal component, since these faults are young and have operated after the formation of coal seams, so the mineralization of REEs in North Kochakali coal deposit is epigenetic.