Rock Mechanics
Shahla Miri Darmarani; Erfan Khoshzaher; Hamid Chakeri
Abstract
Shotcrete is used as a component of the support system in tunnels, and one of the methods to enhance its mechanical properties is by incorporating fibers. Fibers can significantly improve the mechanical properties of shotcrete, including compressive and tensile strength. This leads to savings in time, ...
Read More
Shotcrete is used as a component of the support system in tunnels, and one of the methods to enhance its mechanical properties is by incorporating fibers. Fibers can significantly improve the mechanical properties of shotcrete, including compressive and tensile strength. This leads to savings in time, cost, and post-installation maintenance. In recent years, due to the environmental pollution caused by the production of synthetic fibers, there has been increasing interest in using recycled materials, mainly recycled steel fibers from worn tires. The present study is a laboratory-based research program investigating the feasibility of using recycled fibers to improve the mechanical properties of shotcrete. In this study, recycled steel fibers from worn tires and shaves of basalt stone were used to create laboratory samples. The laboratory samples included cubic (10×10 cm) and cylindrical (15×30 cm) specimens with five different mix designs: ordinary shotcrete, shotcrete containing 0.5%, 1%, 1.5%, and 2% recycled fibers. These fibers were categorized into three length groups: coarse, mixed, and fine. The laboratory tests included compressive and tensile (Brazilian) strength tests at 3-day intervals. The results of the laboratory studies indicated that recycled fibers from worn tires could significantly enhance the mechanical properties of shotcrete, with a two-fold increase in compressive strength observed when the fiber content was increased by 2%. Moreover, the inclusion of basalt stone shaves not only improved the compressive strength of the samples but also had a substantial effect on enhancing the tensile strength.
Exploitation
Gopinath Samanta; Tapan Dey; Suranjan Sinha
Abstract
The optimal layout of the stope (stope boundary) in an underground metal mine maximizes the profit of a deposit, subject to the geotechnical and operational mining constraints such as stope length, stope width, stope height. Various approaches have been introduced to address the stope boundary optimization ...
Read More
The optimal layout of the stope (stope boundary) in an underground metal mine maximizes the profit of a deposit, subject to the geotechnical and operational mining constraints such as stope length, stope width, stope height. Various approaches have been introduced to address the stope boundary optimization problem, but due to the computational complexity and numerous practical constraints, the existing models offer partial solutions to the problem. In the present work, a mixed integer programming model has been developed by incorporating mining constraints in a three-dimensional framework. This model is developed based on profit maximization. The sensitivity analysis applied in a case study mine indicates that the model is efficient in assessing the upside potential and downside risk of profit under fluctuating metal prices and mining costs. Additionally, it can be applied at different stages of mine design to facilitate resource appraisal, selection of stoping methods, and comprehensive mine planning. In a practical application on a real orebody, it shows that the proposed model can generate upto 37.32% more profit compared to current stope design practice in the mines.
Environment
Subhash Chandra Devrath; Aditi Nag; Sanjeev Pareek
Abstract
This paper explores sustainable redevelopment strategies for post-mining regions by integrating urban voids and underground housing solutions. Mining landscapes, often characterized by degraded environments, socio-economic stagnation, and underutilized spaces present significant challenges and opportunities ...
Read More
This paper explores sustainable redevelopment strategies for post-mining regions by integrating urban voids and underground housing solutions. Mining landscapes, often characterized by degraded environments, socio-economic stagnation, and underutilized spaces present significant challenges and opportunities for transformation. Urban voids such as abandoned pits, industrial complexes, and obsolete worker settlements can be repurposed into green infrastructure, public amenities, or residential spaces. Underground housing, leveraging the natural insulation of subsurface environments, offers energy-efficient solutions, while preserving surface land for ecological and communal uses. The research proposes a conceptual framework that combines the adaptive reuse of urban voids with innovative underground housing designs to enhance urban attractiveness, sustainability, and inclusivity. key indexing metrics, including environmental, socio-economic, and urban attractiveness indicators, are developed to evaluate the effectiveness of redevelopment efforts. Case studies from Germany, Belgium, France, and the USA illustrate these strategies' practical applications and transformative potential. The findings emphasize the importance of addressing socio-economic constraints, environmental remediation, and regulatory challenges through participatory planning, innovative governance, and public-private partnerships. The paper concludes by identifying areas for future research, including socio-cultural acceptance of underground housing, region-specific policy frameworks, and advanced remediation technologies. This study provides a comprehensive roadmap for transforming mining regions into vibrant, sustainable, resilient urban environments.
Environment
Amirmahmood Razavian; Alireza Arab Amiri; Abolghasem Kamkar Rouhani; Meysam Davoodabdi Farahani
Abstract
Mining activities cause environmental pollution. Satellite remote sensing is considered an effective strategy for monitoring pollution, as other direct methods of testing soil pollution levels are often costly and face accessibility challenges in certain areas. Unlike optical sensors, radar systems can ...
Read More
Mining activities cause environmental pollution. Satellite remote sensing is considered an effective strategy for monitoring pollution, as other direct methods of testing soil pollution levels are often costly and face accessibility challenges in certain areas. Unlike optical sensors, radar systems can capture data in all weather conditions and operate around the clock. However, radar systems do not display details and borders of zones and lack multispectral data collection capability. Consequently, combining various characteristics of optical images and radar data offers a comprehensive approach to monitoring pollution. Given these pros and cons, a combination of optical and radar images from the Sentinel satellite was employed in this study to identify surface and physical pollution areas caused by mining activities. The proposed method is a combination of Curvelet Transform, Simple Linear Iterative Clustering, Principle Components Analysis, and integration of radar and optical results using a statistical based clustering scheme, which allows the detection of contaminated zones. This research benefits from several innovative strategies, such as the separate processing and integration of optical and radar images, the simultaneous application of the curvelet transform and principle component analysis, and the utilization of two distinct clustering methods. Finally, the results obtained from radar and optical images of the Damghan region in Semnan province, Iran, on a 1 to 100.000 scale showed the proposed methodology can segment the contaminated zone caused by the eastern Alborz coal preparation plant through soil pollution modelling.
Exploitation
Marco Antonio Cotrina Teatino; Jairo Jhonatan Marquina Araujo; Jose Nestor Mamani Quispe; Solio Marino Arango-Retamozo; Johnny Henrry Ccatamayo-Barrios; Joe Alexis Gonzalez-Vasquez; Teofilo Donaires-Flores; Maxgabriel Alexis Calla-Huayapa
Abstract
Mining plays a crucial role in the economy of many countries, contributing significantly to GDP, employment, and industrial development. However, optimizing drilling and blasting operations remains a key challenge in open-pit mining due to its direct impact on operational costs and rock fragmentation ...
Read More
Mining plays a crucial role in the economy of many countries, contributing significantly to GDP, employment, and industrial development. However, optimizing drilling and blasting operations remains a key challenge in open-pit mining due to its direct impact on operational costs and rock fragmentation efficiency. This work aims to optimize fragmentation (X50) and drilling and blasting costs using hybrid machine learning models, an innovative approach that improves predictive accuracy and economic feasibility. Six models were developed: Artificial Neural Networks (ANNs), Decision Trees (DT), Extreme Gradient Boosting (XGBoost), Random Forest (RF), and Support Vector Regression (SVR), optimized using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The dataset, comprising 100 blasts, was split into 70% for training and 30% for testing. The SVR+PSO model achieved the highest accuracy for fragmentation prediction, with an RMSE of 0.27, MAE of 0.21, and R2 of 0.92. The RF+GA model was most effective for cost prediction, with an RMSE of 414.58, MAE of 354.14, and R2 of 0.99. Optimization scenarios were implemented by reducing burden (4.3 m to 3.8 m) and spacing (5.0 m to 4.5 m), achieving a 5.7% reduction in X50 (17.6 cm to 16.6 cm) and a 9.5% cost decrease (63,000 USD to 57,000 USD per blast). Predictions for 30 future blasts using the RF + GA model estimated a total cost of 1.7 MUSD, averaging 55,180 USD per blast. These findings confirm the effectiveness of machine learning in cost optimization and improving blasting efficiency, presenting a robust data-driven approach to optimizing mining operations.
Exploitation
Patrick Adeniyi Adesida; Sunday Adex Adaramola
Abstract
This study focuses on predicting the drillability of granitic rocks—precisely the wear rate of button bits, by integrating rock strength and mineralogical properties. The objective is to develop a predictive model for bit wear rate using a Rock Engineering System (RES) approach. Key rock parameters ...
Read More
This study focuses on predicting the drillability of granitic rocks—precisely the wear rate of button bits, by integrating rock strength and mineralogical properties. The objective is to develop a predictive model for bit wear rate using a Rock Engineering System (RES) approach. Key rock parameters (uniaxial compressive strength, porosity, specific gravity, and the mineral content of quartz, plagioclase, hornblende, and biotite) were analysed via a RES interaction matrix to derive a new Drillability Index capturing their combined influence. This analysis revealed that UCS and porosity are the most influential factors in the system. The resulting RES-based model correlates strongly with observed bit wear rates, achieving a high coefficient of determination (R² ≈ 0.93) and low prediction errors (RMSE = 2.79, MAE = 2.14). The MAPE (= 38%) indicates a marked improvement in accuracy over traditional regression methods. Integrating mechanical and mineralogical factors is a novel approach to drillability prediction, providing a more comprehensive account of rock characteristics than conventional models. Validation results show that the RES-derived Drillability Index reliably predicts field performance, offering practical value for optimising drilling operations and guiding geomechanical analysis. Additionally, the study proposes a drillability classification scheme to further support the field application of the findings.
M. Shamsi; M. Noparast; Seyyed Z. Shafaie; M. Gharabaghi; S. Aslani
Abstract
Copper smelting slags are hard materials. Therefore,to recover their copper by flotation method, grinding should be carried out to obtain optimal particle size. Copper smelting slags in the Bardeskan district, with work index of 16.24 kwh/st, were grinded for 65 minutes to reach an acceptable degree ...
Read More
Copper smelting slags are hard materials. Therefore,to recover their copper by flotation method, grinding should be carried out to obtain optimal particle size. Copper smelting slags in the Bardeskan district, with work index of 16.24 kwh/st, were grinded for 65 minutes to reach an acceptable degree of freedom for the flotation tests, with particle size of 80%, smaller than 70 μm. With this grinding time, degree of freedom for copper-bearing minerals was achieved 85-90%. The floatation method performed and the procedure used for the optimization of the effective parameters were described in this paper. The results obtained for the flotation tests, carried out at the optimal conditions after grinding the slags (with a grinding time of65 minutes), showed 62.23% of copper recovery, while, by flotation of copper slags at optimal conditions after increasing the grinding time to 85 minutes (d80 = 48µ), the Cu recovery was increased to 79.89%.
Exploitation
Ali Rezaei; Ebrahim Ghasemi; Ali Farhadian; Sina Ghavami
Abstract
In this study, a comprehensive investigation has been done on 10 different types of granite building stones from various mines in Iran. The study aims to investigate the relationship between the texture coefficient (TC) and abrasivity properties of the studied stones. Abrasivity of stones was quantified ...
Read More
In this study, a comprehensive investigation has been done on 10 different types of granite building stones from various mines in Iran. The study aims to investigate the relationship between the texture coefficient (TC) and abrasivity properties of the studied stones. Abrasivity of stones was quantified through six indices, including equivalent quartz content (EQC), rock abrasivity index (RAI), Schimazek abrasivity factor (F), Cerchar abrasivity index (CAI), building stone abrasivity index (BSAI), and the Taber wear index (Iw). Bi-variate regression analysis was applied to develop the predictive equations for relationship between TC and abrasivity indices. The investigations demonstrated that there is a direct relationship between TC and all abrasivity indices. Furthermore, TC has moderate to high relationship with abrasivity indices. After developing the equations, their accuracy was evaluated by performance criteria including determination coefficient (R2), the normalized root mean square error (NRMSE), the variance account for (VAF), and the performance index (PI). The strongest relationship was found between TC and RAI (with R2, VAF, NRMSE, and PI value of 0.850, 0.074, 85.386, and 1.630, respectively), while the weakest relationship was observed between TC and F (with R2, NRMSE, VAF, and PI value of 0.491, 0.532, 47.605, and 0.435, respectively). This research demonstrates importance of the textural characteristics of stones, especially TC as a reliable index, on the abrasivity properties of granite building stones. Thus, the equations developed herein can be practically used for estimating the stone abrasivity in building stone quarrying and processing projects.
M. Otari; R. Dabiri
Abstract
Heavy metal concentration in the soils and sediments has increased worldwide during the last century due to the mining, smelting, and industrial activities. The Forumad chromite deposit is located in the Sabzevar ophiolitic complex (SOC), with a long history of mining activities, yet very little is known ...
Read More
Heavy metal concentration in the soils and sediments has increased worldwide during the last century due to the mining, smelting, and industrial activities. The Forumad chromite deposit is located in the Sabzevar ophiolitic complex (SOC), with a long history of mining activities, yet very little is known about the heavy metal contamination in its surrounding environment. In this research work, the soil pollution by heavy metals was investigated with respect to the geochemical, statistical, and environmental indicators over the chromite mine in Forumad. The concentrations of heavy metals were analyzed, and the results obtained showed that the mean concentrations of Cr (5837.5 ppm) and Ni (570.7 ppm) in the nearby soils and sediments were significantly high. On the other hand, the mean concentrations of the other heavy metals present such as As, Cd, Co, Cu, Pb, and V were close to the geological background values. The multivariate statistical analyses (Pearson coefficient analysis, Cluster analysis, and principal component analysis) were used to understand the various anthropogenic and geological (lithogenic) sources. Our geochemical and environmental assessments suggested that Cr, Ni, Co, and V had similar properties, and their presence in the soils was mainly from the ultramafic rocks and chromite deposits. However, the calculated enrichment factors for Cr and Ni were more than 10, suggesting their anthropogenic sources due to the mining activities. The significant Cr and Ni contaminations in the Forumad nearby soils indicated that the status of heavy metal contaminations of the area should receive further considerations in the metal mine areas throughout SOC.
Exploitation
Gebremariam Mesele; Miruts Hagos; Bheemalingeswara Konka; Tsegabrhan Gebreset; Misgan Molla; N Rao Cheepurupalli; Girmay Hailu; Negassi Debeb; Assefa Hailesilasie
Abstract
The Dallol Depression, located in the northern Danakil Depression, has a complex geological history shaped by Afar rifting, containing approximately 1.7 km of evaporite deposits. These deposits, heavily influenced by volcanic activity and extensional tectonic faulting, exhibit significant structural ...
Read More
The Dallol Depression, located in the northern Danakil Depression, has a complex geological history shaped by Afar rifting, containing approximately 1.7 km of evaporite deposits. These deposits, heavily influenced by volcanic activity and extensional tectonic faulting, exhibit significant structural variability. This research focuses on the potash-bearing section of the salt sequence, which consists of several distinct layers including the marker bed, sylvinite member, upper carnallitite member, bischofitite member, lower carnallitite member, and kainitite member. Employing satellite imagery (Landsat Thematic Mapper), geological and structural mapping, borehole data, and seismic analysis, this study characterizes the sub-surface features of the evaporites and estimates their reserves. The RockWorks software facilitated the development of a subsurface stratigraphic map and a three-dimensional fence diagram for enhanced interpretation. Seismic data indicate that while the upper layers of the evaporite deposits are largely horizontal and undeformed, deeper layers exhibit considerable tectonic disturbance. Thickness variations were observed, with evaporite and alluvial deposits being thinner at the southeastern rim and thicker in the eastern concession center. The total potash reserve is estimated at approximately 2.96 billion tons, of which 877.76 million tons (29.60%) remain unexploited. Current borehole designs restrict the company's extraction capacity to 24.64%. This study recommends revising mining strategies, incorporating updated borehole designs and advanced geophysical methods to improve potash recovery and promote sustainable practices in the Dallol region.
Seyyed M. Seyyed Alizadeh Ganji; S. Z. Shafaie; N. Goudarzi
Abstract
This work was aimed to evaluate and compare the performances of the solvents D2EHPA (Di-(2-ethylhexyl) phosphoric acid), Cyanex 272 (bis (2,4,4-trimethylpentyl) phosphinic acid), and a mixture system of D2EHPA and Cyanex272 in the separation of some rare earth elements (REEs) including lanthanum, gadolinium, ...
Read More
This work was aimed to evaluate and compare the performances of the solvents D2EHPA (Di-(2-ethylhexyl) phosphoric acid), Cyanex 272 (bis (2,4,4-trimethylpentyl) phosphinic acid), and a mixture system of D2EHPA and Cyanex272 in the separation of some rare earth elements (REEs) including lanthanum, gadolinium, neodymium, and dyspersym from a nitric acid solution. The results obtained showed that Cyane272 had the lowest separation factor in the separation of Dy, La, Nd, and Gd from each other. Also it was found that a mixture system of D2EHPA and Cyanex272 had the best performance in the separation of the investigated REEs, owing to the higher separation factors for Dy/Nd and Dy/Gd, as well as the lower extraction efficiencies for Gd (64.54%), La (30.07%), and Nd (26.47) from Dy (99.92). It was also determined that the separation factors forDy/Nd and Dy/Gd were 720.05 and 3640.27, respectively, using their mixture system.
Exploration
V S S A Naidu Badireddi; Vije durga raju Mullagiri; mvs sekhar Bezawada; K S N Reddy; Ambili V
Abstract
The Bavanapadu-Nuvvalarevu coastal sector in Andhra Pradesh, India, hosts substantial subsurface heavy mineral (HM) resources, presenting significant economic potential. This study employs ArcGIS raster techniques to estimate Total Heavy Mineral (THM) and Total Economic Heavy Mineral (TEHM) resources ...
Read More
The Bavanapadu-Nuvvalarevu coastal sector in Andhra Pradesh, India, hosts substantial subsurface heavy mineral (HM) resources, presenting significant economic potential. This study employs ArcGIS raster techniques to estimate Total Heavy Mineral (THM) and Total Economic Heavy Mineral (TEHM) resources in a 39 square kilometers area, integrating geospatial analysis with field data from core sediment samples. The findings reveal a total of 2.681953 million tons of THM, including 2.434422 million tons of TEHM, with the highest concentration observed in the top 1-meter sea bed sediment layer (1.605286 million tons). Ilmenite, garnet, and sillimanite dominate the mineral assemblage, accompanied by smaller quantities of zircon, monazite, and rutile, offering an estimated revenue potential of $634 to $851 million USD. The application of ArcGIS methodologies, particularly inverse distance weighting (IDW) interpolation, enabled precise mapping of HM distribution, despite challenges such as wide sample spacing and shallow core penetration. While the study highlights the economic and industrial significance of the Bavanapadu sector, it also underscores environmental concerns, including habitat disruption and sediment degradation, associated with mining. Sustainable practices, such as advanced separation technologies, site rehabilitation, and comprehensive environmental impact assessments (EIAs), are essential to mitigate ecological impacts. This research demonstrates the efficacy of GIS-based techniques in resource estimation and sustainable mining, offering a replicable framework for coastal and offshore mineral resource management globally. The findings provide critical insights into balancing economic growth with environmental preservation, setting a benchmark for responsible heavy mineral extraction in dynamic coastal environments.
R. Mikaeil; M. Abdollahi Kamran; G. Sadegheslam; M. Ataei
Abstract
Predicting the sawability of the dimension stone is one of the most important factors involved in production planning. Moreover, this factor can be used as an important criterion in the cost estimation and planning of the stone plants. The main purpose for carrying out this work was to rank the sawability ...
Read More
Predicting the sawability of the dimension stone is one of the most important factors involved in production planning. Moreover, this factor can be used as an important criterion in the cost estimation and planning of the stone plants. The main purpose for carrying out this work was to rank the sawability of the dimension stone using the PROMETHEE method. In this research work, four important physical and mechanical properties of rocks including the uniaxial compressive strength, Schmiazek F-abrasivity, mohs hardness, and Young's modulus were evaluated as the criteria. During the research process, two groups of dimension stones were selected and analyzed. The rock samples were collected from a number of Iranian factories for the laboratory tests. The production rate of each sawn stone was selected to verify the proposed sawability ranking method. The results obtained showed that the new ranking method can be reliably used for evaluating the sawability of the dimension stone at any stone factory with different rocks only by the physical and mechanical properties testing.
Exploitation
Moein Bahadori; Moahammad Amiri Hosseini; Iman Atighi
Abstract
As open-pit mining advances, the decreasing separation between blast blocks and surface structures necessitates rigorous control of induced ground vibrations to mitigate structural risks. This study performed 13 single-hole blasting operations at the Golgohar Sirjan Iron Mine processing plant to evaluate ...
Read More
As open-pit mining advances, the decreasing separation between blast blocks and surface structures necessitates rigorous control of induced ground vibrations to mitigate structural risks. This study performed 13 single-hole blasting operations at the Golgohar Sirjan Iron Mine processing plant to evaluate vibration control strategies for protecting the onsite processing plant. A Blastmate III seismograph was employed to record 54 three-component data sets, including waveform data, maximum amplitude, and dominant frequencies. By superimposing waves, optimal delay times (ODT) for the blast holes were determined and the corresponding effects on wave frequencies were analyzed. An experimental blasting pattern was designed based on the derived ODT values, and the impact on ground vibration was examined. The results indicated a 10% reduction in vibration levels with the proposed delay times. Furthermore, considering the minimum distance of 111 meters from the processing plant to the final pit and adhering to the DIN safety standard, it is recommended that blast holes with a maximum diameter of 165mm be used to ensure a safety factor of 15%. For distances exceeding 187 meters, blast holes with a 250mm diameter are recommended to maintain production efficiency and a safety factor of 50%.
Exploitation
Hadi Fattahi; Mohammad Amirabadifarahani; Hossein Ghaedi
Abstract
This study introduces an innovative application of the Power Deck method to optimize drilling and blasting operations in open-pit mining, with a focus on the Nizar cement factory in Qom, Iran. Unlike traditional blasting techniques, this method strategically utilizes a controlled air gap at the end of ...
Read More
This study introduces an innovative application of the Power Deck method to optimize drilling and blasting operations in open-pit mining, with a focus on the Nizar cement factory in Qom, Iran. Unlike traditional blasting techniques, this method strategically utilizes a controlled air gap at the end of each blast hole to enhance explosive energy distribution, thereby reducing excessive drilling and minimizing explosive consumption. Through five blast phases, optimal hole diameters (76 mm and 90 mm) were implemented while maintaining a standardized 1-meter air gap, eliminating the need for additional drilling tests. The findings demonstrate a significant improvement in blasting efficiency, leading to a 12.5% reduction in specific charge and a 9% decrease in specific drilling compared to conventional methods. Post-blast fragmentation analysis, validated using the F50 index from Split-Desktop software, confirmed particle sizes ranging from 10 to 32 cm, aligning with predictions from the Kaz-Ram, Kaznetsov, and Swedifo models. Furthermore, the adoption of the Power Deck method resulted in a 1,448-ton increase in processed material over two months, minimizing crusher downtime due to oversized fragments. This study provides a novel, cost-effective approach to improving rock fragmentation, reducing blasting-related inefficiencies, and enhancing the overall economic performance of open-pit mining operations.
M. Sakizadeh; R. Mirzaei
Abstract
The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total ...
Read More
The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, and Cr(VI) from 41 wells and springs were used during an eight-year time period (2006 to 2013). The cluster analysis was used, leading to a dendrogram that differentiated two distinct groups. The factor analysis extracted eight factors accumulatively, accounting for 90.97% of the total variance. Thus the variations in 17 variables could be covered by just eight factors. K-NN and SVMs were applied for the classification of the aquifer under study. The results of SVMs indicated that the best performed model was related to an exponent of degree one with an accuracy of 94% for the test data set, in which the sensitivity and specificity were 1.00 and 0.87, respectively. In addition, there was no significant difference among the results of different kernels, indicating that an acceptable result can be achieved by selecting the optimum parameters for a kernel. The results of K-NN showed roughly a lower efficiency compared with those of SVMs, where the sensitivity and specificity was reduced to 0.90 and 0.88, respectively, although the accuracy of the model was 93%. A sensitivity analysis was performed on the groundwater quality variables, suggesting that calcium next to nitrate were the most influential parameters in the classification of this aquifer.
Mineral Processing
Mostafa Maleki Moghaddam; Hosein Najmaddaini; Saeid Zare; Masoud Rezaei; Mohammad Ali Motamedineya; Gholamreza Biniaz
Abstract
Abstract
The structural characteristics of mill liners, such as lifter shape and mill speed, significantly influence the grinding process. At the Sarcheshmeh slag flotation plant, the 6×6 meters SAG mill was initially equipped with 48 rows of liners, designed in a Hi-Lo configuration for the first ...
Read More
Abstract
The structural characteristics of mill liners, such as lifter shape and mill speed, significantly influence the grinding process. At the Sarcheshmeh slag flotation plant, the 6×6 meters SAG mill was initially equipped with 48 rows of liners, designed in a Hi-Lo configuration for the first half and a Lo-Lo configuration for the second. Throughout the mill shell liner's 1700-hour operational period, monitoring identified 30 failures. Investigations revealed that defects in the liner design and improper charge motion were the main causes. This study proposes modifications and standardization of the shell liner design, tailored to the specific circuit conditions, to enhance performance and reliability. The redesign included several key changes: 1) Reducing the number of rows: The number of liner rows was decreased from 48 to 32. 2) Adjusting lifter angle: The lifter angle was increased from 23 to 30o to optimize performance. 3) Eliminating Hi-Lo design liners: The Hi-Lo design liners were changed to Hi-Hi, and 4) Reducing liner variety: The variety of liners was streamlined from 5 types to 2. The installation of the proposed liners optimized the charge trajectory for grinding, resulting in higher liner's lifetime. It extended the liner life by 30% and eliminated liner failures, reducing them from 30 to zero. The wear rate for the proposed design was 0.05 mm/hour, while the original design had a wear rate of 0.11 mm/hour. This difference corresponds to a factor of 2.3 times improvement.
Environment
Aditi Nag; Anurag Singh Rathore
Abstract
This research is focused on analyzing the possibilities and challenges of developing tourism in mining heritage cities (MHCs) within conflict areas. These cities simultaneously have vibrant historical and cultural resources and tourism possibilities in the context of security threats and infrastructural ...
Read More
This research is focused on analyzing the possibilities and challenges of developing tourism in mining heritage cities (MHCs) within conflict areas. These cities simultaneously have vibrant historical and cultural resources and tourism possibilities in the context of security threats and infrastructural inadequacy, which usually characterize conflict areas. The study aims to find ways of boosting tourism competitiveness for such areas with a specific interest in formulating sustainable tourist management policies that foster community involvement and cultural heritage protection. The case study analyzes different conflict areas, representing the best practices and the most effective way of exploiting heritage in mining and luring tourist attractions based on the authentic experience. The results exhibit how tourism can serve as an agent towards economic recovery and social empowerment and acts towards peacebuilding in conflict-affected areas. This study furnishes pragmatic recommendations for legislators, the tourism sector, and community members to favor a more robust and inclusive tourism model that benefits the local community and cultural heritage conservation. Finally, the paper underlines the need to understand the complexity of tourism in conflict areas, using some invisible resources for renewal and growth.
Rock Mechanics
Mohammad Amin HajiMohammadi; Mojtaba Bahaaddini; Mohammad Hossein Khosravi; Hassan Vandyoosefi
Abstract
Discontinuities are known as a primary factor in instability of tunnels and underground excavations. To prevent potential damage and overbreak by underground advancement, it is essential to provide a model, which considers both the geometrical and mechanical characteristics of discontinuities. Discrete ...
Read More
Discontinuities are known as a primary factor in instability of tunnels and underground excavations. To prevent potential damage and overbreak by underground advancement, it is essential to provide a model, which considers both the geometrical and mechanical characteristics of discontinuities. Discrete Fracture Network (DFN) is a conceptual model to represent and analyse the complex system of discontinuities within the rock mass. Combined DFN with analytical or numerical methods can be employed as a scientific tool to analyse generated rock blocks, and their stabilities under different loading conditions. This paper aims to investigate the created overbreak by tunnel advancement in the Alborz tunnel located in the Tehran-North freeway in Iran. First, the geometrical characteristics of discontinuities were surveyed by tunnel advancement in 200 meters. Four major joint sets and a bedding plane were identified and their statistical characteristics were measured. The DFN model was generated and its validity was investigated through a comparison against field data. The average volume of generated blocks in the studied area was measured 0.22 m3. The stability of generated blocks around the opening was kinematically evaluated. The volume of formed blocks around tunnel in the DFN model prone to instability due to static or dynamic loads was estimated 2605 m3 while the measured overbreak in field was 2735 m3. The depth of overbreak in DFN model showed a good agreement with field measurements. The results show that DFN model combined with kinematic stability analysis can provide a scientific tool to investigate geological overbreak in underground excavations.
Rock Mechanics
Amin Jamshidi; Deniz Akbay
Abstract
Brazilian tensile strength (BTS) is an important parameter in mining activities, particularly in conditions that rocks are under tensile stresses. This test measures the indirect tensile strength of rocks, which is crucial for understanding the mechanical behavior and quality of rocks in the mining context, ...
Read More
Brazilian tensile strength (BTS) is an important parameter in mining activities, particularly in conditions that rocks are under tensile stresses. This test measures the indirect tensile strength of rocks, which is crucial for understanding the mechanical behavior and quality of rocks in the mining context, including slope stability analysis, blast design, rock support systems, excavation and equipment selection, fracture propagation, and hydraulic fracturing and drilling. So far, no classification of tensile strength of rock for mining applications has been presented. In the present study, a new rock classification based on BTS for the various rocks was proposed. To achieve this purpose, by a reviewing previous studies, uniaxial compressive strength (UCS) and BTS of various rock classes, including igneous, sedimentary, and metamorphic were collected. For each rock class, the correlation equations between UCS and BTS were developed using simple regression analysis. Using data analyses, the rocks was categorized into to seven BTS classes. The findings revealed that igneous, sedimentary, and metamorphic rocks have a wide range of BTS values, and subsequent fall into the different BTS classes. The validity of BTS classification was verified using data of BTS and UCS of various rock classes published in the literature, and results showed that BTS can be as a suitable indicator for preliminary assessment of rock quality. This can lead to a better understand from the strength behavior of the rock under tensile stresses in site a mining activity, and therefore, a more accurate design of a mining project.
Rock Mechanics
Amin Maleki; Hamid Chakeri; Hadi Shakeri; Erfan Khoshzaher; Mohammad Darbor
Abstract
Today, due to technological advancements and increasing demand, various types of Tunnel Boring Machines (TBM) are extensively used for tunneling in both soil and rock. The mechanical excavation method has become attractive in tunnel excavation and underground spaces due to its high safety, rapid progress ...
Read More
Today, due to technological advancements and increasing demand, various types of Tunnel Boring Machines (TBM) are extensively used for tunneling in both soil and rock. The mechanical excavation method has become attractive in tunnel excavation and underground spaces due to its high safety, rapid progress rate, low human labor requirement, and mechanization capability. The high capital costs of mechanical excavation make it essential to conduct laboratory tests, such as linear cutting tests on rocks, before selecting the machine type and adjusting the cutter head blade. The main objective of this study is to investigate the impact of rock mechanical properties on the cutting tool wear using a newly developed small-scale Linear Cutting Machine (LCM). To achieve this, laboratory linear cutting tests on rocks were conducted after constructing the small-scale linear cutting machine. To evaluate the rock cuttability and analyze the performance of disc cutters, 5 rock samples were used at three different penetration depths of 1, 1.5, and 2 mm. The results showed that the wear values of the cutting discs increased with penetration depth in all rock types, with the highest wear observed in basalt. Additionally, Brazilian tensile strength exhibited the highest correlation with cutting disc wear parameters. Furthermore, these studies indicated that determining the mineralogical and physical characteristics of rocks, such as texture, crystal size, and porosity, alongside their mechanical properties, is crucial for predicting rock wear.
Environment
Hosein Esmaeili; Mohammad Ali Afshar Kazemi; Reza Radfar; Nazanin Pilevari
Abstract
This study introduces a Hybrid Markov–Bayesian Framework for predicting and managing accident risks in high-risk industries, with a specific focus on the mining sector. The framework integrates Markov models to analyze dynamic risk transitions and Bayesian networks to infer causal relationships ...
Read More
This study introduces a Hybrid Markov–Bayesian Framework for predicting and managing accident risks in high-risk industries, with a specific focus on the mining sector. The framework integrates Markov models to analyze dynamic risk transitions and Bayesian networks to infer causal relationships among key human and environmental factors. Drawing from a comprehensive dataset of mining operations, the framework evaluates variables such as age, experience, task type, and injury characteristics to predict and control accident risks. The results highlight the model's high performance, achieving an accuracy of 87%, precision of 85%, and an F1-score of 0.84. This innovative approach enables real-time safety interventions and proactive risk management strategies. The findings underscore the framework's potential to improve workplace safety and serve as a scalable tool for accident prevention in other high-risk industries. Future research will focus on enhancing the framework’s adaptability and incorporating additional contextual variables for broader applicability.
Environment
Feridon Ghadimi; Abolfazl Shafaei; Abdolmotaleb Hajati
Abstract
This work investigates the extraction of sodium sulfate (Na2SO4) from Mighan Playa in Arak, Iran, where 163 boreholes were drilled to depths of up to 20 m revealed a heterogeneous lithology dominated by Glauberite (Na2Ca(SO4)2) and Mirabilite (Na2SO4·10H2O) with average sodium sulfate concentrations ...
Read More
This work investigates the extraction of sodium sulfate (Na2SO4) from Mighan Playa in Arak, Iran, where 163 boreholes were drilled to depths of up to 20 m revealed a heterogeneous lithology dominated by Glauberite (Na2Ca(SO4)2) and Mirabilite (Na2SO4·10H2O) with average sodium sulfate concentrations of 25% (ranging from 2–32% and peaking at 55% in localized southwestern areas). The playa’s surface is primarily clay-covered (94%) and interbedded with evaporitic facies including Gypsum, Halite, and carbonate minerals. Seasonal water inflows of 200–800 l/s from a wastewater treatment plant, together with 3.5 m-deep extraction pits and gravitational drainage, have resulted in stagnant ponds over 25% of the southern lake area and an annual reduction in surface area of 5–10%. Stratigraphic analysis further indicates pure Glauberite layers (0.5–1 m thick) at depths of 1,653–1,656 m, in contrast with thicker impure Glauberite-Mirabilite sequences (up to 9 m) present between 1,649–1,659 m. To mitigate these challenges, an integrated engineering approach is proposed that includes pumping seepage brine (with a moisture content of 40%) to solar evaporation pools, employing continuous dual-pump slurry systems for tailings management, and implementing hydraulic balancing through retaining walls and winter brine reserves—measures that enhance extraction efficiency by 30–42% in high-concentration zones. These adaptive mining practices, incorporating in-situ brine leaching and advanced wastewater treatment, are designed to meet 70% of Iran’s annual sodium sulfate demand from an 8 km² operational area while reducing environmental degradation.
I. Montazeri; M. Taji
Abstract
Various traditional and industrial coke making techniques were discussed based on their limitations and production capacities, and the criteria such as the quality and size of coke production, amount of coke crumb, amount of investment, amount of operational costs, labor force and mechanization. In this ...
Read More
Various traditional and industrial coke making techniques were discussed based on their limitations and production capacities, and the criteria such as the quality and size of coke production, amount of coke crumb, amount of investment, amount of operational costs, labor force and mechanization. In this work, the rankings of various traditional and industrial coke making techniques were carried out using a multi-criteria decision making with technique for order preference by similarity to ideal solution (TOPSIS), in which, at first, industrial heat recovery coke oven, by product coke oven and non-recovery coke oven and then traditional bee-hive coke making was performed in Shahrood Simin Coke Company. The designed oven decreased both the environmental pollution and the amount of coke crumb, and increased the coke production and coke recovery qualities.
Environment
Triyani Dewi; Zakirah Raihani Ya’la; Ali Husni; Tri Joko Santoso; Samliok Ndobe; Eka Rosyida; Maemunah Maemunah; Marhawati Mappatoba; Muhammad Saleh Nurdin
Abstract
This study was conducted to determine heavy metal concentrations in sediments, assess the level of contamination using a contamination index, and identify potential sources of heavy metal contamination using multivariate analysis. This study employed contamination indices to evaluate sediment pollution ...
Read More
This study was conducted to determine heavy metal concentrations in sediments, assess the level of contamination using a contamination index, and identify potential sources of heavy metal contamination using multivariate analysis. This study employed contamination indices to evaluate sediment pollution levels. Heavy metal concentrations were analyzed statistically by determining the minimum, maximum, mean, and standard deviation (SD) values. According to the contamination factor (Cf), Cd showed very high contamination levels, whereas Sn, Ni, and Pb indicated moderate contamination. Hg, As, Cr, and Cu were classified as having low levels of contamination. The degree of contamination (Cdeg) ranged from low to high across the sampled sites, reflecting the varied levels of pollution severity. Multivariate statistical analyses, including Principal Component Analysis (PCA), Pearson correlation matrix, and Cluster Analysis (CA), were used to identify potential sources of heavy metal contamination. Cu, Sn, Ni, Hg, and Cr are attributed to natural geological processes, whereas Pb, Cd, and As are linked to anthropogenic activities, likely originating from the nickel mining industry. In conclusion, this study underscores the complex environmental impact of nickel mining in Morowali, highlighting the need for stringent environmental management practices to mitigate further degradation and safeguard the coastal ecosystems in Central Sulawesi.