Exploration
Rashed Pourmirzaee; Hadi Jamshid Moghaddam
Abstract
In recent years, hyperspectral data have been widely used in earth sciences because these data provide accurate spectral information of the earth's surface. This research aims to apply match filtering (MF) on Hyperion hyperspectral imagery for mapping alteration mineral in the Astarghan area, NW Iran. ...
Read More
In recent years, hyperspectral data have been widely used in earth sciences because these data provide accurate spectral information of the earth's surface. This research aims to apply match filtering (MF) on Hyperion hyperspectral imagery for mapping alteration mineral in the Astarghan area, NW Iran. Astarghan is located in the northwest of Iran where deposits of low-sulfide gold-bearing ore rocks occur as veins and stockworks. Therefore, at first, the Astarghan Hyperion scene was topographically and atmospherically corrected. Then, the data quality was surveyed to recognize bad bands and improve the accuracy of the subsequent processing steps. In MF analysis, it is a challenge to separate MF abundance images to target and background pixels. Therefore, to cope with this challenge, a moving threshold technique is proposed. The results indicated three indicative minerals including kaolinite, opal and jarosite. Then, the results were statistically verified by virtual verification and geological data. The verification was performed virtually using United States Geological Survey (USGS) spectral library data, which showed an agreement of 78.06%. Moreover, a comparison of the MF analysis results showed a good agreement with field investigations and overlaying with a detailed geological map of the study area. Finally, in this study the X-ray diffraction (XRD) of three indicative mineral samples was used to check the efficiency of the applied method.
Exploration
Seyyed Saeed Ghannadpour; Samaneh Esmaelzadeh Kalkhoran; Maedeh Behifar; Hadi Jalili
Abstract
In this study, with the aim of identifying alteration zones related to the porphyry copper system, satellite images are processed in study area (the Zafarghand exploration area) in the NE of Isfahan. For this purpose, one of the common methods of separating geochemical anomalies from the background, ...
Read More
In this study, with the aim of identifying alteration zones related to the porphyry copper system, satellite images are processed in study area (the Zafarghand exploration area) in the NE of Isfahan. For this purpose, one of the common methods of separating geochemical anomalies from the background, i.e. fractal Concentration-Number (C-N) model, has been employed. The C-N fractal model will normally be implemented on geochemical samples. While in this study, the digital number values belonging to the pixels of the ASTER sensor image are considered as a systematic sample network and also as input for this model. The output of this processing has been prepared in the form of maps of promising areas of the Zafarghand region. The correspondence of the resulting maps with the alteration map of the region shows that applying the proposed method in determining the propylitic and phyllic alteration zones has had acceptable performance. Finally, with the help of the aforementioned proposed method, a map of the promising areas of the study area has been prepared, and based on that, new zones of alterations have been introduced in the region.
Exploration
Hamid Geranian; Mohammad Amir Alimi
Abstract
This study employs Sentinel-2 satellite images along with the random forest algorithm to create a regional geological map. For this purpose, the independent variables consist of the images for 10 Sentinel-2 bands of the Khosuf-I region, while the class labels consist of a geological map of Khosuf-I divided ...
Read More
This study employs Sentinel-2 satellite images along with the random forest algorithm to create a regional geological map. For this purpose, the independent variables consist of the images for 10 Sentinel-2 bands of the Khosuf-I region, while the class labels consist of a geological map of Khosuf-I divided into three and fifteen rock units. The classification accuracy of the resulting model is 90.97 and 84.85% for the three-class training and testing data, and 94.76 and 63.92% for the fifteen-class training and testing data, respectively. These models are then applied to the Sentinel-2 satellite images' data of the Birjand-IV region to prepare two preliminary geological maps. The Birjand-IV region's three-class geology map reveals that igneous rocks are present in the northern and southern regions, while sedimentary rocks occupy the middle section and metamorphic rocks are found within the region's igneous masses. Similarly, the fifteen-class geology map of Birjand-IV indicates that andesite, dacite, intermediate tuff rock units, and metamorphic rocks characterize the northern region. Conversely, the southern part of the region is mainly composed of ophiolite, flysch sediments, basaltic and ultra-basic volcanic rocks, and limestone and shale interlayers. Field studies in three areas confirm the accuracy of the preliminary geology maps.
Exploration
Eid R. Abo-Ezz; El Sayed I Selim; Hatem Aboelkhair; Haytham Sehsah
Abstract
The bimodal hypsometry of the Arabian-Nubian Shield in the Neoproterozoic triggered the formation of post-amalgamation marine bains in the low-stand terranes of the Arabian shield (AS). The carbonate successions in the extraordinary marine basins in the AS are intruded by granite plutons of different ...
Read More
The bimodal hypsometry of the Arabian-Nubian Shield in the Neoproterozoic triggered the formation of post-amalgamation marine bains in the low-stand terranes of the Arabian shield (AS). The carbonate successions in the extraordinary marine basins in the AS are intruded by granite plutons of different causative types, with major shear zones pathways. Therefore, the conditions for the formation of skarn deposits are mature at the contact of the carbonate succession with the causative granite plutons. Multidisciplinary approaches including ASTER data, Magnetic data, and geochemical data have been applied to the Murdama basin to locate the promising areas for skarn deposits. The Murdama basin has contrasting magnetic anomalies of different intensity at the contact between the Murdama limestone and the post-Murdama causative batholiths; significant magnetic anomalies exist at the contact with the Idah causative magmas. Lineaments related to the Najd fault system (NFS) exist eastward, where calc-silicate alteration-related minerals were evolved, with no clues for penetrative effect for such alteration activity along pathways related to the fracture system or at contact with the Abanat suite. Different spectral mapping techniques, including Spectral Information Divergence (SID), Spectral Angle Mapper (SAM), and Constrained Energy Minimization (CEM) confirm that the Idah suite is the predominant causative magma in the study area with highly evolved calc-silicate alteration-related minerals, such as wollastonite, garnet, and pyroxene. Meanwhile, The Idah suite has been identified as the main causative magma for other reduced skarn localities that have been recorded from the Murdama basin, i.e. the Qitan and An Nimriyah South. Alteration related mineral zones of kaolinite, chlorite, muscovite, and hematite are evolved alongside with calc-silicate minerals at the contact bewteen Idah suite, and the Murdama carbonate member. The geochemical data suggests reducing effect for the Idah suite at the contact between the Murdama carbonate succession and Idah plutons. These preliminary results of this study need detailed field investigations and geochemical explorations for the proposed skarn deposits in the Neoproterozoic molasse basins of the AS.
Exploration
Devraj Dhakal; Kanwarpreet Singh
Abstract
Landslides pose significant risks to human life, infrastructure, and the environment, particularly in geologically unstable regions like the Himalayas. This study aims to develop and validate landslide susceptibility maps using Frequency Ratio (FR) and Information Value (IV) models within a GIS framework. ...
Read More
Landslides pose significant risks to human life, infrastructure, and the environment, particularly in geologically unstable regions like the Himalayas. This study aims to develop and validate landslide susceptibility maps using Frequency Ratio (FR) and Information Value (IV) models within a GIS framework. Employing high-resolution geospatial data, including geomorphological, topographical, and hydrological factors derived from high-resolution digital elevation models (DEMs) and other geospatial datasets. The susceptibility maps were classified into five categories: Low, Moderate, High, Very High, and Extremely High. The models were trained and validated using a landslide inventory of 1313 landslide events, with a 70:30 split for training and testing datasets. The predictive performance of the models was evaluated using the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve, yielding AUC values of 84.1 for the FR model and 83.9 for the IV model. The Landslide Density Index (LDI) further confirmed the models' reliability, indicating higher landslide densities in the predicted high-susceptibility zones. The study demonstrates that both FR and IV models are effective tools for landslide susceptibility mapping and its validation. The findings highlight the FR model's superior predictive accuracy in this specific area. Future research should leverage advanced machine learning techniques, such as XGBoost, Random Forest (RF), Naive Bayes (NB), and K-Nearest Neighbors (KNN), to enhance the reliability and precision of landslide susceptibility models.
Exploration
Ahmed Ali Madani
Abstract
Innovation in mineral exploration occurs either in the construction of new ore deposit models or the development of new techniques used to locate the ore deposits. Band ratio is the image processing technique developed for mineral exploration. The present study presents a new approach used to evaluate ...
Read More
Innovation in mineral exploration occurs either in the construction of new ore deposit models or the development of new techniques used to locate the ore deposits. Band ratio is the image processing technique developed for mineral exploration. The present study presents a new approach used to evaluate the band ratio technique for discrimination and prediction of the Iron-Titanium mineralization exposed in the Khamal area, Western Saudi Arabia using the ensemble Random Forest model (RF) and SPOT-5 satellite data. SPOT-5 band ratio images are prepared and used as the explanatory variables. The target variable is prepared in which (70%) of the target locations are used for training and the rest are for validation. A confusion matrix and the precision-recall curves are constructed to evaluate the RF model performance and the Receiver Operating Characteristics curves (ROC) are used to rank the band ratio images. Results revealed that the 3/1, 2/1 & 3/2 band ratio images show excellent discrimination with AUC values of 0.986, 0.980 & 0.919 respectively. The present study successfully selects the 3/1 band ratio image as the best classifier and presents a new Fe-Ti mineralization image map. The present study proved the usefulness of the Random Forest classifier for the prediction of the Fe-Ti mineralization with an accuracy of 97%.
Exploration
Kaustubh Sinha; Priyangi Sharma; Anurag Sharma; Kanwarpreet Singh; Murtaza Hassan
Abstract
In this expansive study, a thorough analysis of land subsidence in the Joshimath area has been conducted, exercising remote sensing (RS) and Geographic Information System (Civilians) tools. The exploration encompasses colourful pivotal parameters, including Annual Rainfall, Geology, Geomorphology, and ...
Read More
In this expansive study, a thorough analysis of land subsidence in the Joshimath area has been conducted, exercising remote sensing (RS) and Geographic Information System (Civilians) tools. The exploration encompasses colourful pivotal parameters, including Annual Rainfall, Geology, Geomorphology, and Lithology, rounded by the integration of different indicators. Joshimath, a fascinating city nestled within the rugged geography of the Indian state of Uttarakhand, stands out for its unique geographical features and its vulnerability to environmental vulnerabilities. The disquisition is carried out with the backing of ArcMap software, a technical Civilians tool, while exercising data sourced from the recognized Indian Space Research Organisation (ISRO) and the National Remote seeing Centre (NRSC). This comprehensive approach aims to give inestimable perceptivity into the dynamic processes associated with land subsidence in the region, offering critical data for disaster mitigation strategies and sustainable land operation in the area. It's noteworthy that the region endured a significant case of land subsidence in late December 2022, emphasizing the punctuality and applicability of this study. This event not only emphasizes the urgency of comprehending land subsidence in Joshimath but also underscores the necessity for ongoing monitoring and mitigation sweats. The integration of these different data sources and logical ways promises to enhance the understanding of land subsidence dynamics and inform decision- makers in the pursuit of flexible and sustainable land use practices in Joshimath and other also vulnerable regions.
Exploration
Ashraf Ismael; Abdelrahem Khalefa Embaby; Faissal Ali; Hussin Farag; Sayed Gomaa; Mohamed Elwageeh; Bahaa Mousa
Abstract
The mineral resource estimation process necessitates a precise prediction of the grade based on limited drilling data. Grade is crucial factor in the selection of various mining projects for investment and development. When stationary requirements are not met, geo-statistical approaches for reserve estimation ...
Read More
The mineral resource estimation process necessitates a precise prediction of the grade based on limited drilling data. Grade is crucial factor in the selection of various mining projects for investment and development. When stationary requirements are not met, geo-statistical approaches for reserve estimation are challenging to apply. Artificial Neural Networks (ANNs) are a better alternative to geo-statistical techniques since they take less processing time to create and apply. For forecasting the iron ore grade at El-Gezera region in El- Baharya Oasis, Western Desert of Egypt, a novel Artificial Neural Network (ANN) model, geo-statistical methods (Variograms and Ordinary kriging), and Triangulation Irregular Network (TIN) were employed in this study. The geo-statistical models and TIN technique revealed a distinct distribution of iron ore elements in the studied area. Initially, the tan sigmoid and logistic sigmoid functions at various numbers of neurons were compared to choose the best ANN model of one and two hidden layers using the Levenberg-Marquardt pure-linear output function. The presented ANN model estimates the iron ore as a function of the grades of Cl%, SiO2%, and MnO% with a correlation factor of 0.94. The proposed ANN model can be applied to any other dataset within the range with acceptable accuracy.
Exploration
Mobin Saremi; Saeed Yousefi; Mahyar Yousefi
Abstract
The Mineral Prospectivity Mapping (MPM) is a procedure of integrating various exploration data to identify promising areas for follow up mineral exploration programs. MPM facilitates identification of mineral deposit prospects through reducing search spaces for the purpose of mitigating cost and time ...
Read More
The Mineral Prospectivity Mapping (MPM) is a procedure of integrating various exploration data to identify promising areas for follow up mineral exploration programs. MPM facilitates identification of mineral deposit prospects through reducing search spaces for the purpose of mitigating cost and time shortages. In this regard, geochemical anomaly maps constitute one of the most important evidential layers for MPM. In this research work, to produce an efficient geochemical evidential layer, the Staged Factor Analysis (SFA) method and Geochemical Mineralization Probability Index (GMPI) were performed on a dataset of 657 stream sediment samples. In addition to the mentioned maps, a layer of proximity to faults was used to efficiently identify the intended targets of copper hydrothermal deposits. The layers were then weighted and combined using logistic functions and the geometric average method. Based on the obtained results, the promising areas were found in three parts including western, central, and northern areas, which correspond to the faulted units of andesite, tuff, granite, and granodiorite intrusive masses. Finally, in order to evaluate the generated model, the prediction-area (P-A) plot was used, which shows the relative success of the generated map in specifying the desired exploration targets. The P-A plot showed that this model has a prediction rate of 64%. It seems that the proposed method by considering multi-element geochemical signatures and combination by another exploratory layer target the promising areas, those that are simultaneously present with other exploration evidence.
Exploration
Khadijeh Validabadi Bozcheloei; Majid Hashemi Tangestani
Abstract
Evaporites are sediments that chemically precipitate due to the evaporation of an aqueous solution. Most evaporite formations, in addition to evaporite minerals, include detrital rocks such as mudstone, marl, and siltstone. Principal Component Analysis (PCA), Directed Principal Component Analysis (DPCA), ...
Read More
Evaporites are sediments that chemically precipitate due to the evaporation of an aqueous solution. Most evaporite formations, in addition to evaporite minerals, include detrital rocks such as mudstone, marl, and siltstone. Principal Component Analysis (PCA), Directed Principal Component Analysis (DPCA), and Band Ratio methods were applied to Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) data for mapping the Gachsaran evaporite formation and distinguishing its lithological units in the Masjed Soleiman oil field, located in southwestern Iran. This oil field was the first recognized oil field in the Middle East. Colour composites of PCs 4, 5, and 2, as RGB images, effectively discriminated this formation from other sedimentary formations. The gypsum spectrum, resampled to the 9 band centres of ASTER, exhibited reflectance in bands 4 and 8 and absorption in bands 6 and 9. As a result, these bands were selected for DPCA application. PC4 effectively highlighted gypsum outcrops as bright pixels, while the band ratio 2/1 accentuated ferric iron, appearing as bright pixels, which correlated with the red marls. The results of this study demonstrate that ASTER image processing is a cost- and time-effective method that can be utilized for mapping evaporite formations and distinguishing their lithological units.
Exploration
Jabar Habashi; Majid Mohammady Oskouei; Hadi Jamshid Moghadam
Abstract
The studied area located in eastern Iran shows a high potential for various mineralizations, especially copper due to its tectonic activity. Remote sensing data can effectively distinguish these areas because of the sparse vegetation. Therefore, in this study, the ASTER (Advanced Spaceborne Thermal Emission ...
Read More
The studied area located in eastern Iran shows a high potential for various mineralizations, especially copper due to its tectonic activity. Remote sensing data can effectively distinguish these areas because of the sparse vegetation. Therefore, in this study, the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) multi-spectral data was used to recognize argillic, sericite, propylitic, and iron oxide alterations associated with copper mineralization. For this purpose, two categories (porphyry copper-iron and advanced argillic-iron) related alterations were considered to perform the classification of a 2617 square kilometer area using a neural network classification algorithm. To evaluate the accuracy of the classifier, the confusion matrix was computed, which provides overall accuracy and the kappa coefficient factors for assessing classification accuracy. As a result, 64.17% and 83.5% of overall accuracy, and 0.602 and 0.807 of the kappa coefficient were achieved for the advanced argillic alterations and porphyry copper categories, respectively. Ultimately, the validation of the classifications was carried out using the normalized score (NS) equation, employing quantitative criteria. Notably, the advanced argillic class emerged with the top normalized score of 2.25 out of 4, signifying a 56% alignment with the geological characteristics of the region. Consequently, this outcome has led to the identification of favorable areas in the central and northeastern parts of the studied area.
Exploration
Seyyed Saeed Ghannadpour; Morteza Hasiri; Hadi Jalili; Somayeh Talebiesfandarani
Abstract
The Zafarghand area (as a porphyry Cu deposit) is located in the northeast of Isfahan and southeast of Ardestan, which is a part of the Iran-Central structural zone, and more precisely, it is located in the Urmia-Dokhtar volcanic belt. In the porphyry Cu deposits exploration, identifying and determining ...
Read More
The Zafarghand area (as a porphyry Cu deposit) is located in the northeast of Isfahan and southeast of Ardestan, which is a part of the Iran-Central structural zone, and more precisely, it is located in the Urmia-Dokhtar volcanic belt. In the porphyry Cu deposits exploration, identifying and determining the alteration zones is of special importance. The aim of the present study is to identify and highlight the alteration zones of Zafarghand area, with the help of the U-statistic method in the processing of ASTER sensor satellite images. Accordingly, considering the raster nature and digital form of satellite images, the digital number values of each pixel from the image matrices were considered as samples in a systematic network. Finally, the U spatial statistic algorithm was implemented as a moving window algorithm for determining anomaly samples in the set of digital number (DN) values of ASTER satellite image pixels. The results of this technique show that the application of the U-statistic method, considering its structural nature and neighboring samples in decision-making, has been successful and has proven to be very effective in determining the alteration zones in the Zafarghand area.
Exploration
Ajay Kumar
Abstract
Land use (LU) classification based on remote sensing images is a challenging task that can be effectively addressed using a learning framework. However, accurately classifying pixels according to their land use poses a significant difficulty. Despite advancements in feature extraction techniques, the ...
Read More
Land use (LU) classification based on remote sensing images is a challenging task that can be effectively addressed using a learning framework. However, accurately classifying pixels according to their land use poses a significant difficulty. Despite advancements in feature extraction techniques, the effectiveness of learning algorithms can vary considerably. In this study conducted in Talcher, Odisha, India, the researchers proposed the use of Artificial Neural Networks (ANNs) to classify land use based on a dataset collected by the Sentinel-2 satellite. The study focused on the Talcher region, which was divided into five distinct land use classes: coal area, built-up area, barren area, vegetation area, and waterbody area. By applying ANNs to the mining region of Talcher, the researchers aimed to improve the accuracy of land use classification. The results obtained from the study demonstrated an overall accuracy of 79.4%. This research work highlights the importance of utilizing remote sensing images and a learning framework to address the challenges associated with pixel-based land use classification. By employing ANNs and leveraging the dataset from the Sentinel-2 satellite, the study offers valuable insights into effectively classifying different land use categories in the Talcher region of India. The findings contribute to the advancement of techniques for accurate land use analysis, with potential applications in various fields such as urban planning, environmental monitoring, and resource management.
Exploration
Eman M. Kamel; Mohamed S.H. Hammed; Osama E.A. Attia
Abstract
In the recent years, the use of ASTER and Landsat data have become prevalent for mapping different types of rock formations. Specifically, this study utilizes ASTER (L1B) and Landsat 8 (AOL) images to map outcrops of various gypsum facies in Ras Malaab area of west-central Sinai. These gypsum facies ...
Read More
In the recent years, the use of ASTER and Landsat data have become prevalent for mapping different types of rock formations. Specifically, this study utilizes ASTER (L1B) and Landsat 8 (AOL) images to map outcrops of various gypsum facies in Ras Malaab area of west-central Sinai. These gypsum facies are part of a lithostratigraphic group called Ras Malaab, estimated to have been formed during the Miocene period. A range of image processing techniques was employed to create the final facies map including quartz and sulphate indices, composite image band combinations, band ratios, principal component analyses, decorrelation stretching, and SAM mapping followed by supervised classification. By using band combinations, mineral indices, and principal component analyses, sulphate minerals were distinguished from their surroundings. Additionally, decorrelation stretches and band ratios were used to differentiate between primary, secondary, faulted gypsum, anhydrite, and carbonates. The SAM rapid mapping algorithm was also an effective tool to distinguish between the main facies in the studied area and to differentiate between primary massive and bedded gypsum. The results of this study were summarized by creating a facies map of the area using supervised classification, which, in addition to petrographic studies, greatly aided in understanding the distribution of the different gypsum facies.
Exploration
Abdelrahem Khalefa Embaby; Sayed Gomaa; Yehia Darwish; Samir Selim
Abstract
This study aims to develop an empirical correlation model for estimating the uranium content of the G-V in the Gabal Gattar area, northeastern desert of Egypt, as a function of the thorium content and the total gamma rays. Using the recent MATLAB software, the effect of selecting tan-sigmoid as a transfer ...
Read More
This study aims to develop an empirical correlation model for estimating the uranium content of the G-V in the Gabal Gattar area, northeastern desert of Egypt, as a function of the thorium content and the total gamma rays. Using the recent MATLAB software, the effect of selecting tan-sigmoid as a transfer function at various numbers of hidden neurons was investigated to arrive at the optimum Artificial Neural Network (ANN) model. The pure-linear function was investigated as the output function, and the Levenberg-Marquardt approach was chosen as the optimization technique. Based on 1221 datasets, a novel ANN-based empirical correlation was developed to calculate the amounts of uranium (U). The results show a wide range of uranium content, with a determination coefficient (R2) of about 0.999, a Root Mean Square Error (RMSE) equal to 0.115%, a Mean Relative Error (MRE) of -0.05%, and a Mean Absolute Relative Error (MARE) of 0.76%. Comparing the obtained results with the field investigation shows that the suggested ANN model performed well.
Exploration
Abdallah Atef; Ahmed A. Madani; Adel A. Surour; Mokhles K. Azer
Abstract
This study reports the application of remote sensing data and knowledge-driven GIS modeling to provide favorability maps for gold and copper mineralized areas. The South Gabal Um Monqul (SGUM) and the Gabal Al Kharaza (GKZ) prospects located in the northern Eastern Desert of Egypt are the targets for ...
Read More
This study reports the application of remote sensing data and knowledge-driven GIS modeling to provide favorability maps for gold and copper mineralized areas. The South Gabal Um Monqul (SGUM) and the Gabal Al Kharaza (GKZ) prospects located in the northern Eastern Desert of Egypt are the targets for the present study. Four thematic layers (lithology maps, old trenches buffer analysis, lineament density maps, and alteration zone maps) were prepared and used as inputs for a weighted overlay GIS model. Combined results from false color composite images, particularly the RGB parameters (PC2, PC1, and PC3) and the RGB parameters (MNF1, MNF2, and MNF3) classified the host rocks in both prospects. PCA-based extraction of lineaments was considered using line algorithm of PCI Geomatica. QuickBird band math (G+B), (R+G), and (G-B) for RGB was successful in delineating ancient workings within the mineralized zones. Old trenches layers were buffered to 20 m wide bands extending in all directions. Landsat-8 band ratios imagery (6/5 * 4/5, 6/7, and 6/2) in red, green, and blue (RGB) is potent in defining alteration zones that host gold and copper mineralizations. Acceptable scores of 30%, 30%, 20%, and 20% were assigned for the alteration zone maps, ancient workings buffer analysis, lithology maps and lineament density maps, respectively. Two favorability maps for mineralizations were generated for the SGUM and GKZ prospects. Validation of these maps and their potential application to detect new mineralization sites in the northern Eastern Desert were discussed.
Exploration
F. Mirsepahvand; M.R. Jafari; P. Afzal; M. A. Arian
Abstract
The goal of this research work is to recognize the metallic mineralization potential in the Ahar 1:100,000 sheet (NW Iran) using the remote sensing data based on determination of the alteration zones. This area is located in the Ahar-Arasbaran metallogenic zone as a significant metallogenic zone in Iran ...
Read More
The goal of this research work is to recognize the metallic mineralization potential in the Ahar 1:100,000 sheet (NW Iran) using the remote sensing data based on determination of the alteration zones. This area is located in the Ahar-Arasbaran metallogenic zone as a significant metallogenic zone in Iran and Caucasus. In this research work, the Landsat-7 ETM+ and advanced space borne thermal emission and reflection radiometer (ASTER) multispectral remote sensing data was interpreted by the least square fit (LS-Fit), spectral angle mapper (SAM), and matched filtering (MF) algorithms in order to detect the alteration zones associated with the metallic mineralization. The results obtained by these methods show that there are index-altered minerals for the argillic, silicification, advanced argillic, propylitic, and phyllic alteration zones. The main altered areas are situated in the SE, NE, and central parts of this region.