Mineral Processing
Chol Ung Ryom; Kwang Hyok Pak; Il Chol Sin; Kwang Chol So
Abstract
Shaking table and flotation are often used in scheelite (CaWO4) beneficiation, and usually they are applied in sequence. In this paper, analysis of mineral movement have been investigated in shaking table in which pulp was conditioned with xanthate as a collector and fed, heavy scheelite was concentrated, ...
Read More
Shaking table and flotation are often used in scheelite (CaWO4) beneficiation, and usually they are applied in sequence. In this paper, analysis of mineral movement have been investigated in shaking table in which pulp was conditioned with xanthate as a collector and fed, heavy scheelite was concentrated, while heavy pyrite removed directly on the deck by the action of collector. Artificially mixed mineral with 1% scheelite and 2% pyrite was used in CFD simulations and experiments. Through CFD simulations, it was found that pyrite particles, which were hydrophobic by collector, were attached to the water-air interface and subjected to upward buoyancy, which increased the density difference between scheelite and pyrite particles and enabled the separation of both minerals in the shaking table. The experiment results showed that the concentrate grade in conventional table concentration was 23.5% WO3, the separation efficiency was 77.89%, while the concentrate grade of scheelite in the table concentration of xanthate presence was 65.0% WO3 and the separation efficiency was 80.88%. The combination of flotation in table with collector addition not only eliminated the flotation to remove pyrite after table but also resulted in a lower rate of scheelite loss.
Mineral Processing
Mostafa Maleki Moghaddam; Hosein Najmaddaini; Saeid Zare; Masoud Rezaei; Mohammad Ali Motamedineya; Gholamreza Biniaz
Abstract
Abstract
The structural characteristics of mill liners, such as lifter shape and mill speed, significantly influence the grinding process. At the Sarcheshmeh slag flotation plant, the 6×6 meters SAG mill was initially equipped with 48 rows of liners, designed in a Hi-Lo configuration for the first ...
Read More
Abstract
The structural characteristics of mill liners, such as lifter shape and mill speed, significantly influence the grinding process. At the Sarcheshmeh slag flotation plant, the 6×6 meters SAG mill was initially equipped with 48 rows of liners, designed in a Hi-Lo configuration for the first half and a Lo-Lo configuration for the second. Throughout the mill shell liner's 1700-hour operational period, monitoring identified 30 failures. Investigations revealed that defects in the liner design and improper charge motion were the main causes. This study proposes modifications and standardization of the shell liner design, tailored to the specific circuit conditions, to enhance performance and reliability. The redesign included several key changes: 1) Reducing the number of rows: The number of liner rows was decreased from 48 to 32. 2) Adjusting lifter angle: The lifter angle was increased from 23 to 30o to optimize performance. 3) Eliminating Hi-Lo design liners: The Hi-Lo design liners were changed to Hi-Hi, and 4) Reducing liner variety: The variety of liners was streamlined from 5 types to 2. The installation of the proposed liners optimized the charge trajectory for grinding, resulting in higher liner's lifetime. It extended the liner life by 30% and eliminated liner failures, reducing them from 30 to zero. The wear rate for the proposed design was 0.05 mm/hour, while the original design had a wear rate of 0.11 mm/hour. This difference corresponds to a factor of 2.3 times improvement.
Mineral Processing
Sajad Kolahi; Mohammad Jahani Chegeni; Asghar Azizi
Abstract
In Part 2 of this research work, five types of liners, i.e. wave, step, step@, ship-lap, and ship-lap@, are examined. These liners all have similar connected lifters with different volumes. Their difference is in the width, height, and type of the lifter profile. All the five liner types, from 8 to 64 ...
Read More
In Part 2 of this research work, five types of liners, i.e. wave, step, step@, ship-lap, and ship-lap@, are examined. These liners all have similar connected lifters with different volumes. Their difference is in the width, height, and type of the lifter profile. All the five liner types, from 8 to 64 lifters, are simulated using the Discrete Element Method (DEM). In this research work, for the first time, data from the sum of the kinetic and potential energies of individual balls (79,553 particles) are used to find the appropriate range for the number of lifters. In other words, the kinetic and potential energies of all particles within the system (inside the ball mill) are the basis for determining the appropriate number of lifters. The results suggest that for the wave liner, the appropriate range of the number of lifters is between 8 and 16, for the step, step@, and ship-lap liners; it is between 12 and 20, and for the ship-lap@ liner, it is between 8 and 20. In fact, using the data on the kinetic and potential energies of the balls inside the mill, it is possible to determine the appropriate range of the number of lifters, which is done for the first time in this study. In general, it is suggested that the data on the kinetic and potential energies of the balls can be used to determine the number of mill lifters, and unlike what has been done. So far, by other researchers, the number of mill lifters should not be determined solely by using its diameter or the dimensions of the lifters. Also the effect of mill-rotation direction on the values of kinetic and potential energies in step and ship-lap liners is investigated. It is shown that the step@ and ship-lap@ liners transfer more energy to the balls than the step and ship-lap liners, and have a suitable direction of rotation.
Mineral Processing
Meysam Nikfarjam; Ardeshir Hezarkhani; Farhad Azizafshari; Hamidreza Golchin
Abstract
Geometallurgical modeling (GM) plays a crucial role in the mining industry, enabling a comprehensive understanding of the complex relationship between geological and metallurgical factors. This study focuses on evaluating metallurgical varibles at the Sungun Copper mine in Iran by measuring and predicting ...
Read More
Geometallurgical modeling (GM) plays a crucial role in the mining industry, enabling a comprehensive understanding of the complex relationship between geological and metallurgical factors. This study focuses on evaluating metallurgical varibles at the Sungun Copper mine in Iran by measuring and predicting process properties, including semi-autogenous power index (SPI), recovery (Re), and concentration grade. To overcome the additivity limitations of geostatistical methods, we utilized machine learning algorithms for enhanced predictive modeling, aiming to improve decision-making and optimize mining operations in geometallurgy. The research incorporates crucial data inputs such as sample coordinates, grades, lithology, mineralization zones, and alteration to assess the accuracy and reliability of different machine learning regression methods. The Relative Standard Deviation (RSD) is highlighted as a significant metric for comparing the accuracy of predicted process properties. Evaluation metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R2) further confirm the superiority of specific modeling methods in certain scenarios. The K-Nearest Neighbors (KNN) method exhibits superior accuracy, lower error metrics (RMSE and MAE), and a higher R2 for modeling the SPI test. For modeling Cu grade in concentrate, Support Vector Regression (SVR) proves to be effective and reliable, outperforming the Multilayer Perceptron (MLP) method. Despite MLP's high R2, its higher RSD suggests increased uncertainty and variability in the predictions. Therefore, SVR is considered more suitable for modeling Cu grade in concentrate. Findings optimize operations at Sungun Copper mine, improving decision-making, efficiency, and profitability.
Mineral Processing
Fatemeh Kazemi; Ali akbar Abdollahzadeh
Abstract
This research work aims to explore the intricate mineralogy and texture of the tailing piles of iron ore processing plants to present a particle-based prediction for magnetite recovery. Three samples were taken from different points of tailings piles of an iron ore processing plant. Davis tube tests ...
Read More
This research work aims to explore the intricate mineralogy and texture of the tailing piles of iron ore processing plants to present a particle-based prediction for magnetite recovery. Three samples were taken from different points of tailings piles of an iron ore processing plant. Davis tube tests were performed on each sample under various operating conditions. Process mineralogy studies were conducted to determine the mineralogy modal of the feed and product of each test. An Artificial Neural Network (ANN) model was used to make a model that related the grade and recovery of magnetite in the product to the mineralogy modal of the tailing piles. The magnetite grade and association index of feed, the magnetic intensity, and the water flow rate were the inputs to this network. The grade and magnetite recovery correlation coefficients were 0.954 and 0.86, respectively. The grade of magnetite in the feed emerged as a limiting factor on the grade and recovery of magnetite in concentrate. An increase of one unit in magnetite grade in the feed resulted in a 1.68 decrease in the recovery. The association index changes with the coefficients of -0.173 cause the changes in predicted magnetite recovery in the concentrate.
Mineral Processing
Mohammad Reza Vashadi Arani; Seyed Mohammad Razavian
Abstract
The use of lithium-ion batteries has increased significantly in recent years due to their high energy density and the presence of valuable materials such as cobalt and nickel, making them an important source for secondary material recovery. However, recycling these batteries presents substantial safety ...
Read More
The use of lithium-ion batteries has increased significantly in recent years due to their high energy density and the presence of valuable materials such as cobalt and nickel, making them an important source for secondary material recovery. However, recycling these batteries presents substantial safety risks, primarily from fire and explosion hazards caused by unwanted short circuits and high voltage components. These risks are especially pronounced during mechanical preparation, crushing, storage, and transportation, where damaged or improperly handled batteries can ignite or explode. To mitigate these hazards, rapid and controlled discharge of batteries before recycling is critical. Discharging using salt solutions is recognized as a simple, fast, and cost-effective method to reduce residual charge and minimize the risk of fire during subsequent handling. In this research, four different types of natural salts at various concentrations were tested, prioritizing the use of accessible, low-cost, and impure salts over pure laboratory-grade salts to enhance scalability and economic feasibility. Initial experiments involved direct immersion of batteries in salt solutions at concentrations of 10%, 15%, and 20% by weight. Among the complementary processes evaluated, the use of a high-speed magnetic stirrer, iron powder, and ultrasonic operations (ultrasonic bath and probe) were found to further reduce discharge time and help achieve target voltages more quickly. Notably, ultrasonic agitation at 28 kHz was particularly effective, significantly accelerating the discharge process and enabling the batteries to reach lower voltage thresholds such as 0.5 volts in a shorter time.
Mineral Processing
Hossein Hamedani; Arash Sobouti; Mohammad Baqaeifar; Bahram Rezai; Fatemeh Sadat Hoseinian
Abstract
In this work, a representative sample was initially prepared from exploratory drilling cores, followed by identification and characterization studies based on XRD analysis; the sample consists primarily of quartz, kaolinite, muscovite-illite, calcite, potassium, feldspar, albite, dolomite, siderite, ...
Read More
In this work, a representative sample was initially prepared from exploratory drilling cores, followed by identification and characterization studies based on XRD analysis; the sample consists primarily of quartz, kaolinite, muscovite-illite, calcite, potassium, feldspar, albite, dolomite, siderite, and chalcopyrite. Optical and scanning electron microscopy studies revealed that the sulfide minerals in the sample include chalcopyrite, chalcocite, and pyrite, with the most significant copper minerals primarily comprising chalcopyrite, chalcocite, and malachite. No free gold was observed, and gold mainly exists as a substitute within the structure of sulfide minerals. AAS analysis results indicated that the copper grade in the sample is 0.99%. To investigate the flotation of copper minerals, influential parameters such as pH, collector concentration, frother concentration, sodium sulfide concentration, and the effect of particle size were examined. The results demonstrated that under optimal conditions (pH = 11, collector concentration of 100 g/t Potassium Amyl Xanthate (PAX), 100 g/t Sodium Isopropyl Xanthate (SIPAX), 60 g/t frother methyl isobutyl carbinol (MIBC), 1000 g/t Na2S at a particle size of d80= 75μ), the total copper grade and recovery following two stages cleaner flotation were achieved at 21.2% and 60.2%, respectively.
Mineral Processing
Mehrshad Asghari; Mohammad Noaparast; Mohammad Jahani Chegeni
Abstract
Because roller screens are connected to the pelletizing discs on one side and the green iron ore induration furnaces on the other side in pelletizing plants, they play a crucial role in the plant's productivity and steel production process. Consequently, an optimal performance and structural design are ...
Read More
Because roller screens are connected to the pelletizing discs on one side and the green iron ore induration furnaces on the other side in pelletizing plants, they play a crucial role in the plant's productivity and steel production process. Consequently, an optimal performance and structural design are essential in this context. A significant issue with roller screens during the classification of green pellets is the deformation of the rolls caused by the force exerted by the pellets during operation. This deformation disrupts the uniformity of the gap between the rolls, thereby reducing the efficiency of the screen, and the overall performance of the circuit, as well. Despite the importance of this issue, no studies have been conducted to investigate the force exerted by the pellets during classification on the screen or the subsequent mechanical behavior of the rolls. Therefore, this study employs the discrete element method–finite element method (DEM-FEM) coupling simulation technique to examine, for the first time, the mechanical behavior of rolls and to optimize their structural design. The results indicated that decreasing the roll diameter from 80 mm to 30 mm led to 1088 times increase in the average total deformation of the rolls. Furthermore, increasing the thickness of the polyurethane liner from 3 mm to 14 mm caused the average total deformation to rise by 54 times.
Mineral Processing
Arefeh Zahab Nazoori; Bahram Rezai; Aliakbar Abdolahzadeh
Abstract
Assessing frother performance through various indices is crucial to understanding how their molecular structure affects functionality, as well as evaluating their effectiveness in floating both fine and coarse particles. This study investigates for the first time the frothing behavior and froth stability ...
Read More
Assessing frother performance through various indices is crucial to understanding how their molecular structure affects functionality, as well as evaluating their effectiveness in floating both fine and coarse particles. This study investigates for the first time the frothing behavior and froth stability of Polyethylene Glycol 300 (PEG300), Dipropylene Glycol (DPG), and Tetraethylene Glycol (TEG) and compares them with conventional frothers such as Dow Froth-250 (DF-250). To evaluate frother performance, air flow rate and frother concentration were selected as the main operational variables influencing froth formation and stability index. Initially, the frothing behavior of the reagents was predicted using the HLB-MW diagram, and then the frothing power of the desired frothers was examined using the dynamic frothability and dynamic froth stability indices. The results revealed that PEG300 exhibited the highest dynamic frothing index (13000 s.dm3/mol) and high froth stability, which is suitable for the flotation of coarse particles. In contrast, DPG showed the lowest frothing power and froth stability, with a dynamic frothing index of 2500 s.dm3/mol. TEG, with an intermediate frothing index of 5000 s.dm3/mol, demonstrated moderate performance in both froth production and stability. DF-250, with an exceptionally high frothing index, outperformed all the other agents, providing both superior froth generation and stability. Froth stability was assessed using dynamic froth stability indices and dynamic frothing capability, providing meaningful insights into frother performance. The results also showed that both air flow rate and frother concentration had a significant impact on frothing index and stability, with higher concentrations generally enhancing froth stability, particularly for PEG300 and DF-250.
Mineral Processing
Dorna Pirouzan; Reza Parvareh; Ziaeddin Pourkarimi; Mehdi Rahimi; Javad Moosavi; Hossein Habibi
Abstract
In our country, a massive volume of slag is generated annually from steel production facilities, amounting to about 20 percent of the total steel produced. This slag is an important and valuable source for extracting vanadium, with 67 percent of the world's vanadium production sourced from slag. Iran ...
Read More
In our country, a massive volume of slag is generated annually from steel production facilities, amounting to about 20 percent of the total steel produced. This slag is an important and valuable source for extracting vanadium, with 67 percent of the world's vanadium production sourced from slag. Iran ranks among the top five countries that possess this vital metal; however, vanadium extraction from slag has not been carried out to date. Moreover, due to the unstable quality of the slag, its utilization in other industries has not been feasible. To prevent the environmentally harmful effects of accumulating slag and the inability to utilize it in various industries, it is essential to implement an economic solution for recovering the components present in steel-making slag. In the present project, after sampling from the stored slag deposits at Mobarakeh Steel Company, comprehensive laboratory and pilot-scale studies were conducted on the representative samples. Through processes involving roasting with sodium carbonate, acid leaching with 2 M sulfuric acid, iron cementation, solvent extraction using DEHPA, stripping, and scrubbing, we successfully extracted pentoxide vanadium with high purity suitable for producing ferrovanadium.
Mineral Processing
Raheleh Hazrati; Shahram Rostami; Sadegh Marahem
Abstract
The components of low-grade bauxite were 28.4% silica, 34.9% alumina, 16.1% iron oxide as ferric oxide and 11.26% loss on ignition. Due to the high silica content of this type of bauxite, it couldn’t be processed by Bayer method. Therefore, a sintering method with limestone and sodium carbonate ...
Read More
The components of low-grade bauxite were 28.4% silica, 34.9% alumina, 16.1% iron oxide as ferric oxide and 11.26% loss on ignition. Due to the high silica content of this type of bauxite, it couldn’t be processed by Bayer method. Therefore, a sintering method with limestone and sodium carbonate was used for selective extraction of alumina. Experimental design was performed by surface response method (RSM) using central composite design. Selected parameters were temperature, soaking time, mole ratio of sodium oxide to alumina, mole ratio of calcium oxide to silica. The maximum amount of extraction of alumina from low-grade Jajarm bauxite by sintering method was 74.2%, which was obtained in the optimal values of the parameters as follows: A temperature of 1157°C, a soaking time of 35 minutes, a mole ratio of alkaline oxide (K2O + Na2O) of 1.25 and a mole ratio of calcium oxide to silica of 1.99. In 31 run experiments, the mixture of materials powder was transferred to an alumina crucible and heated in a muffle furnace at temperatures and soaking times determined by the experimental design. The sintered material was pulverized. The resulting powder was leached by 150 mL of a boiling alkaline solution (20 g/L NaOH + 20g/L Na2CO3) for 30 minutes at a stirring speed of 300rpm. Extracted aluminum from the leaching stage was analyzed by atomic absorption spectrometry.
Mineral Processing
Chaimae LOUDARI; Moha Cherkaoui; Imad El Harraki; Rachid Bennani; Mohamed El Adnani; EL Hassan Abdelwahed; Intissar Benzakour; François Bourzeix; Karim Baina
Abstract
Energy efficiency and product quality control are critical concerns in grinding mill operations, particularly within the innovative context of Mine 4.0. This study introduces a novel Genetic Algorithm (GA)-based optimization framework specifically developed to address these challenges. Given the mining ...
Read More
Energy efficiency and product quality control are critical concerns in grinding mill operations, particularly within the innovative context of Mine 4.0. This study introduces a novel Genetic Algorithm (GA)-based optimization framework specifically developed to address these challenges. Given the mining industry’s significant energy consumption, especially in grinding processes, the proposed approach optimizes key parameters such as feed composition, water flow rates, and power consumption levels, while maintaining sieve refusal near the target threshold of 20%. Using real operational data from a Moroccan plant, the GA achieved a Mean Absolute Error (MAE) of 0.47, outperforming Simulated Annealing (SA) and Particle Swarm Optimization (PSO), which yielded MAEs of 1.14 and 0.74, respectively. The GA also demonstrated superior convergence stability and robustness, as evidenced by lower variability in predicted power consumption. These results validate the effectiveness of the GA framework in navigating nonlinear, high-dimensional parameter spaces and improving energy efficiency while ensuring product quality consistency. Ultimately, this research confirms the potential of metaheuristic optimization in enhancing grinding mill efficiency and supports the broader shift towards intelligent and sustainable mining operations under the Mine 4.0 paradigm.
Mineral Processing
Hossna Darabi; Faraz Soltani
Abstract
The main characteristic of mechanical flotation cells is to have an impeller, which is responsible for creating particle suspension, gas dispersion, and producing turbulence necessary to create effective bubble-particle interactions. For this purpose, in this paper, the conditions for complete gas dispersion ...
Read More
The main characteristic of mechanical flotation cells is to have an impeller, which is responsible for creating particle suspension, gas dispersion, and producing turbulence necessary to create effective bubble-particle interactions. For this purpose, in this paper, the conditions for complete gas dispersion in a Denver laboratory flotation cell have been investigated. Then, the critical impeller speed has been investigated for quartz particles with different size fractions. The effect of complete dispersion of introduced gas and critical impeller speed on the flotation rate constant (k) of particles was investigated. The results showed that k was the minimum value at an impeller speed of 700 rpm in the superficial gas velocity of 0.041- 0.125 cm/s for all size fractions. The impeller speed of 700 rpm was sufficient to keep -106µm quartz particles suspended, but at all superficial gas velocities, the minimum impeller speed required for complete gas dispersion was 850 rpm. Therefore, it can be stated that the reason for the low k value at a stirring speed of 700 rpm is the incomplete distribution of bubbles and particles (+106µm), resulting in a reduced probability of air bubbles colliding with solid particles. By increasing the impeller speed to values greater than 700 rpm, the k value increased, which is due to the complete distribution of particles and air bubbles in the flotation cell (increased probability of bubble-particle collision). Therefore, it is necessary to provide suitable operating conditions for the complete dispersion of air bubbles and also to keep solid particles suspended.
Mineral Processing
Kwang Sok Jong; Chang Il Kim; Song Chol Kim; Kum Chon Jang; Hyon Hui Jang
Abstract
In this study, the effects of various reagents-sodium carbonate and sodium hydroxide as pH regulators, calcium lignosulfonic acid as depressant, and combined sodium oleate and amide as collector on the flotation of apatite ore were investigated using flotation experiments, and adsorption mechanism of ...
Read More
In this study, the effects of various reagents-sodium carbonate and sodium hydroxide as pH regulators, calcium lignosulfonic acid as depressant, and combined sodium oleate and amide as collector on the flotation of apatite ore were investigated using flotation experiments, and adsorption mechanism of collector on apatite surface were evaluated using quantum mechanical simulations. The flotation experiments showed that the addition of 4 kg/t sodium carbonate and 1.5 kg/t sodium hydroxide as pH regulators, 3 kg/t calcium lignosulfonic acid as depressant and 60 g/t combined sodium oleic acid and oleamide (acid number of collector; 105 mgKOH/g) as collector exhibited excellent collecting ability for apatite. From low-grade apatite ore with P2O5 7.05%, a concentrate with P2O5 31.42% was obtained with 81.08% recovery in rougher flotation. Compared with the simulation results for the interaction energy between apatite {001} surface and collectors, and the relative concentration of collector on apatite {001} surface, adsorption strength has following order; combined sodium oleic acid and oleamide > sodium oleic acid > oleamide. From the simulation results on the equilibrium configuration of the collector with the fluorapatite {001} surface in the liquid environment, it was revealed that the two atoms (N and H) of the oleamide can form a strong bidentate conformation, and O atom in the C-O group and that in -C=O group of oleic acid anion can bond with the Ca atom on the surface {001} to form monodentate conformation.
Mineral Processing
Mohammad Jahani Chegeni; Sajad Kolahi; Asghar Azizi
Abstract
Consumed energy is the most important issue and concern in industrial ball mills, and includes a major part of the costs of mineral processing plants. By using suitable liners and the optimal lifter count, the energy of the mill is properly transferred to the balls. In Part 1 of this research work, five ...
Read More
Consumed energy is the most important issue and concern in industrial ball mills, and includes a major part of the costs of mineral processing plants. By using suitable liners and the optimal lifter count, the energy of the mill is properly transferred to the balls. In Part 1 of this research work, five types of liners, i.e. Lorain, Osborn, Rib, cuboid, and Hi-lo, are examined. These liners all have separate lifters with the same volume. Their difference is in the width, height, and type of lifter profile. First, all types of liners are simulated with four lifters using the Discrete Element Method (DEM). Then the lifter count is increased four by four to fill the entire wall of the mill with lifters. Based on this, Lorain liner from 4 to 24 lifters, Osborn liner from 4 to 120 lifters, Rib liner from 4 to 40 lifters, and cuboid and Hi-lo liners from 4 to 64 lifters are simulated. For the first time, the kinetic (KE) and potential (PE) energies as well as the sum of these two energies (TE) of all the balls are calculated, and compared in the entire duration of the simulation from 0–13s for all the liner types and lifter counts mentioned above. Finally, by using data related to KE, PE, and TE for each type of liner, the optimal lifter count is obtained. Accordingly, 16 to 20 lifters are recommended for the Lorain liner, 64 to 76 lifters for the Osborn liner, 24 to 32 lifters for the Rib liner, 44 lifters for the cuboid liner, and 36 to 44 lifters for the Hi-lo liner.
Mineral Processing
Rim Amata; Mohamed Bounouala; Ashraf Alsafasfeh; Amar Amata; Sofiane Bouabdallah
Abstract
The Djebel Onk region of Algeria faces a significant environmental concern, related to phosphate mining waste. Although these mining tailings contain relatively low quantities of valuable minerals, they still include up to 25% P₂O₅ in the particle size range of 0.25-1 mm (-1-+0.25), suggesting the ...
Read More
The Djebel Onk region of Algeria faces a significant environmental concern, related to phosphate mining waste. Although these mining tailings contain relatively low quantities of valuable minerals, they still include up to 25% P₂O₅ in the particle size range of 0.25-1 mm (-1-+0.25), suggesting the potential for recovery and reuse. This research, based on the Bir El Ater area, explores the methods to recover phosphate-rich minerals, optimizing their reuse. Two techniques were explored: calcination, a heat treatment altering mineral chemistry, and electrostatic separation, which uses the electrical properties to separate minerals. The black phosphate tailings collected from the curved grids of wet processing were subjected to detailed analysis using Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), and X-Ray Fluorescence (XRF), to examine their mineralogical and chemical properties. The results showed a notable improvement in the P₂O₅ concentration, with electrostatic separation reaching a 30.03% content and an 89% recovery rate, while calcination achieved the 30.91% content with a 91% recovery rate. These results highlight the effectiveness of both methods in recovering phosphate from mining tailings, contributing to a better waste management, a more efficient resource use, and a reduced environmental footprint. They also suggest sustainable recovery pathways, especially for the regions facing water scarcity, where flotation is impractical. With the ability to achieve high recovery rates without chemical inputs, calcination and electrostatic separation stand out as environmentally sustainable options for global phosphate beneficiation.
Mineral Processing
Sahil Thakur; Ravi Kumar Sharma
Abstract
Slope stability is critical for infrastructure safety, particularly in seismically active regions. This work evaluates the stability of a slope along the Baroti-Reyur road in Himachal Pradesh, located in Zone 5, using a novel combination of Limit Equilibrium Methods (LEMs) and Finite Element Methods ...
Read More
Slope stability is critical for infrastructure safety, particularly in seismically active regions. This work evaluates the stability of a slope along the Baroti-Reyur road in Himachal Pradesh, located in Zone 5, using a novel combination of Limit Equilibrium Methods (LEMs) and Finite Element Methods (FEMs). The analysis examines natural slope conditions and the impact of sustainable mitigation measures, including retaining structures and bioengineering techniques, under the static and dynamic conditions. The soil model incorporated a modulus of elasticity (E) of 90,000 kN/m², and a poisson's ratio (v) of 0.3 to reflect realistic slope-soil-structure interactions. Retaining structures such as gravity, cantilever, and gabion walls (4 m, 6 m, and 5 m high) were constructed using M30 RCC and Fe500 steel. Bioengineering measures featured deep-rooted grasses like Vetiver and Broom grass to improve soil cohesion (c), shrubs like Lantana camara for surface stability, and trees like Albizia lebbeck to reinforce deeper soil layers. These vegetation-based interventions enhanced slope resilience, while promoting ecological restoration. Theoretical LEM analysis revealed marginal stability, with static FOS values of 1.1 and pseudo-static FOS of 1.05. GEO5 pseudo-static analysis indicated critically low FOS value of 0.88 for dynamic saturated conditions, improving to 2.01 with retaining structures. FEM analysis using PLAXIS 2D provided more detailed insights, capturing complex soil-structure interactions with a static FOS of 1.028 and dynamic FOS of 0.994. By combining FEM with sustainable mitigation strategies, this work offers a framework for resilient slope stabilization, ensuring safety, while promoting environmental sustainability in seismically active regions.
Mineral Processing
Reza Zolfaghari; Mohammad Karamoozian
Abstract
In flotation, entrainment (ENT) affects the recovery of the concentrate, and the entrainment model is often supposed to be only a function of particle size in models. Some research shows that other variables may also significantly affect ENT. In this study, some flotation experiments executed using a ...
Read More
In flotation, entrainment (ENT) affects the recovery of the concentrate, and the entrainment model is often supposed to be only a function of particle size in models. Some research shows that other variables may also significantly affect ENT. In this study, some flotation experiments executed using a mixture of pure quartz as the valuable mineral and a pure magnetite sample as the gangue mineral to investigate the effects of other variables, such as solid content, airflow rate, frother, and collector dosages, on ENT. The results showed ENT varied from 0.071 to 0.851 is different, while the entrainment recovery was between 0.006 to 0.23, which means that the difference is statistically significant. ENT affected by (1) collector dosage, (2) frother dosage, (3) solid content, (4) the interaction between airflow rate and solid content and, (5) the interaction between airflow rate and frother dosage. An empirical statistical model is presented based on operational parameters. As the present models for ENT incorporate just particle size, it is not enough to predict gangue recovery in industrial applications by keeping the operating conditions constant. This novel model can predict ENT based on different operational parameters. The developed model is presented based on the particle mass by changing the operation parameters.
Mineral Processing
Seyyed Mohsen Zamzami; Javad Vazifeh Mehrabani
Abstract
In this research, solid phase settling process from the liquid phase were optimized simultaneously on the different responses, using the response surface methodology (RSM). The effect of solid percentage, flocculant dosage, temperature, and pulp pH were evaluated on the responses of solid settling velocity, ...
Read More
In this research, solid phase settling process from the liquid phase were optimized simultaneously on the different responses, using the response surface methodology (RSM). The effect of solid percentage, flocculant dosage, temperature, and pulp pH were evaluated on the responses of solid settling velocity, water turbidity, viscosity and density of settled pulp. The results showed that by increasing the flocculant dosage from 0.5 to 3.5 g/ton, settled pulp viscosity decreases from 49.05 cSt to 17.54 cSt. The higher values of pulp pH as well as low amount of solid percentage resulted in high water turbidity, which shows the lack of contact between flocs and suspended particles. The results indicated that the pulp solid percentage and the flocculants dosage are the most significant parameters on the responses. Optimum test conditions were obtained in industrial mode by using 5 g/t flocculant, solid percentage 23.96%, pH=7.5 temperature of the pulp 21.5°C in which condition, settling rate, pulp viscosity, pulp density and water turbidity were predicted to be 13.23 cm/min, 5.1 cSt, 1.61 g/cm3 and 15.7 NTU respectively. Repetition test in the model predicted optimum condition was carried out and verified the predicted optimized condition.
Mineral Processing
Jiaye Li; Jing Zhao; Zebin Wang; Huan Liu; Qing Wen; Jinling Yin; Ze Li; Yang Lei; Guiling Wang
Abstract
Traditional graphite has safety and environmental issues, associated with fluorine purification. To address these issues, an energy-saving and efficient graphite purification process can be explored through the acid leaching method with composite additives. The acid leaching process was studied and optimized ...
Read More
Traditional graphite has safety and environmental issues, associated with fluorine purification. To address these issues, an energy-saving and efficient graphite purification process can be explored through the acid leaching method with composite additives. The acid leaching process was studied and optimized in detail using the controlled variable method including the effects of the soaking time and temperature on the graphite purification process. Then the response surface method was used to simulate the orthogonal experiment of graphite purification to verify the correctness of the single-factor, experiment. The purity and micromorphology of the graphite samples at each stage were characterized and tested. The experimental results showed that the optimal liquid-to-solid ratio of the acid solution and graphite was 20:1, which could make the fixed carbon content reach 99.77%. On the basis of these optimal process conditions, the addition types were further explored. The experimental result showed that the best addition was ascorbic acid and EDTA, which could reduce the content of various impurities in the graphite raw material without destroying the microstructure of the graphite. Benefitting from the addition of compound additives in the two-step process, almost all the metal ions were leached from the graphite. After the acid and water leaching, the fixed carbon content of graphite could reach 99.96%. The process parameters proposed in this paper were scientifically verified by both the single-factor and multi-factor experiments, and innovative and effective additives were introduced in different steps to make the graphite purity break through 99.9%, which was difficult to reach by the traditional method.
Mineral Processing
Ahmed Mohammedelmubarak Ah Abbaker; Nevzat Aslan
Abstract
This work optimizes coarse particle flotation using microbubble-assisted flotation in a cationic environment created by dodecylamine (DDA). The flotation efficiency of coarse quartz particles (D50 = 495 μm) was investigated through an examination of the interactions between microbubbles (20-30 μm), ...
Read More
This work optimizes coarse particle flotation using microbubble-assisted flotation in a cationic environment created by dodecylamine (DDA). The flotation efficiency of coarse quartz particles (D50 = 495 μm) was investigated through an examination of the interactions between microbubbles (20-30 μm), the cationic environment, and various operational parameters. A systematic approach utilizing factorial and Box-Behnken experimental designs was employed to evaluate the effects of the multiple variables. These variables included the dodecylamine (DDA) concentration, methyl isobutyl carbinol (MIBC) concentration, impeller speed, pulp density, the addition of fine particles, and the presence of microbubbles. The DDA concentration and the impeller speed significantly impacted the coarse particle recovery, while microbubbles increased recovery by 15% under non-optimized conditions; optimization revealed a more negligible difference. The optimized conditions achieved maximum recoveries of 99.47% and 97.88% with and without microbubbles, respectively, indicating the minimal effect when other parameters were optimized. This research work shows that a careful optimization of the flotation parameters can achieve high coarse particle recovery rates, with microbubbles playing a less significant role than anticipated. These findings suggest that optimizing the conventional parameters may be more crucial than the microbubble introduction for enhancing the flotation efficiency of larger particles. The work contributes to our understanding of coarse particle flotation, and provides insights for improving the mineral processing techniques for challenging the particle sizes.
Mineral Processing
Ashraf Alsafasfeh; Anum Razzaq; Abeer Sajid; Maryam Nazir; Muhammad Badar Hayat; Mirza Zaid
Abstract
Palygorskite (PAL), also known as attapulgite, is a clay mineral prized for its nanorod-like silicate structure and fibrous morphology. The traditional PAL purification methods often involve wet gravity separation techniques such as sedimentation and screening, which require significant water usage and ...
Read More
Palygorskite (PAL), also known as attapulgite, is a clay mineral prized for its nanorod-like silicate structure and fibrous morphology. The traditional PAL purification methods often involve wet gravity separation techniques such as sedimentation and screening, which require significant water usage and pose sustainability challenges, especially in the water-scarce regions. This work introduces a novel, environmentally sustainable dry beneficiation method for PAL. A large PAL sample with 41.7% content and 10% moisture was crushed, ground using a pin mill, and classified into three particle size fractions:-0.088 mm + 0.066 mm, -0.066mm +0.044 mm, and -0.044 mm. These fractions were treated with an air classifier. A Box-Behnken experimental design was employed to investigate the effects of particle size, shutter opening, and motor speed on the classification efficiency. The optimal parameters for grade were 400 rpm motor speed, shutter opening of 1 mm, and feed size of -0.066 mm + 0.044 mm. For the recovery, the optimal conditions were 1200 rpm motor speed, shutter opening of 2.5 mm, and feed size of -0.044 mm. The most favorable balance of grade (67.8%) and recovery (53.2%) was achieved with a motor speed of 1200 rpm, shutter opening of 4 mm, and feed size of -0.066 mm + 0.044 mm. The work concludes that air classification significantly enhances the PAL beneficiation process, with a 50% increase in grade, and recommends exploring the low shear grinding techniques for further improvement.
Mineral Processing
Sahil Kumar; Ravi Kumar Sharma
Abstract
Landslides affecting life and property losses has become a serious threat in various countries worldwide which highlights the importance of slope stability and mitigation. The methods and tools employed for slope stability analysis, ranging from traditional limit equilibrium methods to worldly-wise numerical ...
Read More
Landslides affecting life and property losses has become a serious threat in various countries worldwide which highlights the importance of slope stability and mitigation. The methods and tools employed for slope stability analysis, ranging from traditional limit equilibrium methods to worldly-wise numerical modelling techniques. It focuses on the importance of accurate and reliable data collection, including geotechnical investigations, in developing precise slope stability assessments. Further, it also addresses challenges associated with predicting and mitigating slope failures, particularly in dynamic and complex environments. Mitigation strategies for unstable slopes were systematically reviewed of different researchers, encompassing both traditional and innovative measures. Traditional methods, such as retaining walls and drainage systems, the mitigation strategies were explored, emphasizing both preventive measures and remedial interventions. These include the implementation of engineering solutions such as slope structures, and Matrix Laboratory (MATLAB) techniques along with the comprehensive analysis of four prominent slope stability assessment tools: Rock Mass Rating (RMR), Slope Mass Rating (SMR), and the Limit Equilibrium Method (LEM). The comparative analysis of these tools highlights their respective strengths, limitations, and areas of application, providing researchers, authors, and practitioners with valuable insights to make informed choices based on project-specific requirements. To ensure the safety and sustainability of civil infrastructure, a thorough understanding of geological, geotechnical, and environmental factors in combination with cutting-edge technologies is required. Furthermore, it highlights the important role that slope stability assessment and mitigation play a major role in civil engineering for infrastructure development and mitigation strategies.
Mineral Processing
Alireza Javadi
Abstract
The main and economic mineral of antimony is stibnite or antimony sulfide, and the research and processes in the world are based on it, and oxide minerals are not considered among the economic and important reserves of antimony due to the difficulty of processing and the lack of optimal efficiency of ...
Read More
The main and economic mineral of antimony is stibnite or antimony sulfide, and the research and processes in the world are based on it, and oxide minerals are not considered among the economic and important reserves of antimony due to the difficulty of processing and the lack of optimal efficiency of the flotation method. On the other hand, taking into account that a large part of the antimony reserve of Sefidabeh is made up of low-grade oxidized ore; this research on the method of economic extraction and the possibility of recovering this type of reserve will be important due to the strategic nature of antimony metal. According to the experiments conducted in this research, the effective parameters for flotation include: pH, collector concentration, activator concentration, depressant concentration, activator type, and humic acid concentration. DX7 software was used for statistical modeling of experiments. Based on the above parameters, the design of the experiment was carried out using a partial factorial method and finally the number of 16 experiments was determined for the effect of the above factors on the grade and weight recovery of the sample. Antimony ore flotation with a grade of 4.32% was carried out in a two-stage method. In this method, in the first stage, flotation of antimony sulfur (stibnite, Sb2S3) was performed at a specific pH by adding the activator of copper sulfate or lead nitrate and the depressant together, potassium amyl xanthate collector and MIBC. In the second stage of flotation, the tailings of the first stage of flotation for antimony oxides were treated with a sodium oleate collector (with determined concentrations) at a specific pH by adding copper sulfate or lead nitrate activator, sodium oleate collector and humic acid and MIBC frother agent. The interaction between pH and activator concentration (BD) has a direct effect on the amount of concentrated antimony, with an increase in pH from 6 to 8 antimony when using an activator concentration of 300 g/t, and a decrease when using an activator concentration of 500 g/t. Flotation was done. In the best conditions, with two-stage flotation of antimony, 68.99% recovery and 13.32 grade were obtained.
Mineral Processing
Ahmad Abbasi Gharaei; Bahram Rezai; Hadi Hamidian Shormasti
Abstract
This paper examines the performance of Atmospheric Leaching (AL) and High-Pressure Acid Leaching (HPAL) on nickel laterite, classified as limonite. The study, conducted on a laboratory scale, involved temperatures of 35-95°C for AL and 220-250°C for HPAL. Nickel and cobalt contents were found ...
Read More
This paper examines the performance of Atmospheric Leaching (AL) and High-Pressure Acid Leaching (HPAL) on nickel laterite, classified as limonite. The study, conducted on a laboratory scale, involved temperatures of 35-95°C for AL and 220-250°C for HPAL. Nickel and cobalt contents were found to be 0.7% and 0.04%, respectively. AL achieved an 89% yield of Al with a pH of 0.2 and a 14-hour leaching time, while nickel and iron recoveries reached 92% and 87% after 20 hours, with an acid consumption of 1.2 kg H2SO4 per 100 kg laterite (dry) at pH 0.2. Leaching experiments at 220-250°C for 2 hours showed similar nickel recovery rates, indicating no improvement beyond 240°C. Hematite, a stable compound associated with nickel, hindered its release during HPAL due to its resistance to leaching. Nickel yields remained around 90% in both AL and HPAL tests. Iron behavior differed significantly between the two methods, with HPAL dissolving iron initially but transforming it into hematite in situ, leading to lower net acid consumption compared to AL. The leaching mechanism for iron oxides followed empirical power law kinetics of order 1.5 with activation energies of 36.23 and 25.09 kJ/mol for Ni and Fe, respectively.